精英家教网 > 高中数学 > 题目详情
9.已知椭圆方程为:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(0,1),且离心率e=$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆方程;
(2)过原点的直线交椭圆于B,C两点,A(1,$\frac{1}{2}$),求△ABC面积最大值.

分析 (1)由题意知,e=$\frac{c}{a}=\frac{\sqrt{3}}{2}$,b=1,a2-c2=1,由此能求出椭圆的标准方程.
(2)设直线l的方程与椭圆C联立,C(x1,y1),B(x2,y2),利用弦长公式求出CB,A到CB的距离,然后求解三角形的面积,求出最大值即可.

解答 解:(1)由题意知,e=$\frac{c}{a}=\frac{\sqrt{3}}{2}$,b=1,a2-c2=1,…(4分)
解得a=2,
所以椭圆的标准方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.…(6分)
(2)由题意知,直线l的斜率存在时,直线l:y=kx.
设直线l与椭圆交于C(x1,y1),B(x2,y2)两点,
由$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$得可得 (4k2+1)x2-4=0,x1+x2=0,x1x2=$\frac{-4}{1+4{k}^{2}}$.
|CB|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+{k}^{2}}×\frac{4}{\sqrt{1+4{k}^{2}}}$,
A到CB 的距离为:d=$\frac{|k-\frac{1}{2}|}{\sqrt{1+{k}^{2}}}$,
∴△ABC面积s=$\frac{1}{2}×$|CB|×d=$\sqrt{2}$×$\sqrt{\frac{4{k}^{2}-4k+1}{1+4{k}^{2}}}$=$\sqrt{2}$×$\sqrt{1-\frac{4k}{1+4{k}^{2}}}$=$\sqrt{2}$$\sqrt{1-\frac{4}{4k+\frac{1}{k}}}$.
∵k+$\frac{1}{k}$≥2或k+$\frac{1}{k}$≤-2,当且仅当k=$±\frac{1}{2}$时取等号.
所以当k=-$\frac{1}{2}$时,△ABC面积最大值2.

点评 题考查椭圆的方程和运用,考查直线方程和椭圆方程联立,消去未知数,运用韦达定理和弦长公式,考查点到直线的距离公式和基本不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|x-3|+|x-2|.
(1)若f(x)≥3-k恒成立,求k的取值范围;
(2)求不等式f(x)<3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列求导运算正确的是(  )
A.(3x)′=3xlog3eB.(x2cosx)′=-2xsinxC.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$D.(log2x)′=$\frac{1}{xln2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知偶函数f(x)是定义在R上的可导函数,其导函数为f′(x),当x<0时有2f(x)+xf′(x)>x2,则不等式(x+2017)2f(x+2017)-4f(-2)<0的解集为.(-2019,-2015).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数$f(x)=3sin(ωx+\frac{π}{6}),ω>0,x∈R$的最小正周期为$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)利用“五点作图法”,画出f(x)在长度为一个周期的闭区间上的简图;
ωx+$\frac{π}{6}$
x
f(x)

(3)已知$f(\frac{α}{4}+\frac{π}{12})=\frac{9}{5}$,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(n)=in-i-n(n∈N*),则集合{f(n)}的元素个数是(  )
A.2B.3C.4D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在正项等比数列{an}中,a1=1,a2a4=81,则数列{an}的前5项和S5=(  )
A.40B.81C.121D.364

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点E(-2,0),点P时圆F:(x-2)2+y2=36上任意一点,线段EP的垂直平分线交FP于点M,点M的轨迹记为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过F的直线交曲线C于不同的A、B两点,交y轴于点N,已知$\overrightarrow{NA}$=m$\overrightarrow{AF}$,$\overrightarrow{NB}$=n$\overrightarrow{BF}$,求m+n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.光线从A(-3,4)点出发,到x轴上的点B后,被x轴反射到y轴上的C点,又被y轴反射,这时反射光线恰好过D(-1,6)点,求直线BC的方程.

查看答案和解析>>

同步练习册答案