精英家教网 > 高中数学 > 题目详情

【题目】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3.从这8名运动员中随机选择4人参加比赛.

1)设A为事件选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会,求事件发生的概率;

2)设为选出的4人中种子选手的人数,求随机变量的分布列.

【答案】1;(2)见解析

【解析】

1)根据古典概型的概率公式计算可得结果;

2)随机变量的所有可能取值为,根据古典概型的概率公式计算出随机变量的各个取值的概率,即可得到随机变量的分布列.

1)从这8名运动员中随机选择4人参加比赛,共有种,其中事件所包含的基本事件数为

所以.

2)随机变量的所有可能取值为

所以随机变量的分布列为::

1

2

3

4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,的三条垂线交于点内的任意一点.求证:的外心三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知为抛物线上两点,为抛物线焦点.分别过作抛物线的切线交于点.

(1)若,求

(2)若分别交轴于两点,试问的外接圆是否过定点?若是,求出该定点坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知展开式中,各项系数和比它的二项式系数和大992,则下列结论正确的是(

A.展开式中的有理项是第2项和第5B.展开式中没有常数项

C.展开式中二项式系数最大的项是第3项和第4D.展开式中系数最大的项是第5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为4.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点作两条直线,分别交椭圆两点(异于点).当直线的斜率之和为定值时,直线是否恒过定点?若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的单调区间;

2)若函数在区间内单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的顶点为A,焦点为F.F作直线l与抛物线交于点P、Q,直线AP、AQ分别与抛物线的准线交于点M、N.问:直线l满足什么条件时,三直线PN、QM、AF恒交于一点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.

方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.

方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.

(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;

(2)若某顾客获得抽奖机会.

①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;

②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,天花板上挂着3串玻璃球,射击玻璃球规则:每次击中1球,每串中下面球没击中,上面球不能击中,则把这6个球全部击中射击方法数是(

A.78B.60C.48D.36

查看答案和解析>>

同步练习册答案