ÒÑÖª£ºÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¶þ´Îº¯Êýy=x2-£¨m+1£©x-m-2µÄͼÏóÓëxÖá½»ÓÚA¡¢BÁ½µã£¬µãAÔÚxÖáµÄ¸º°ëÖᣬµãBÔÚxÖáµÄÕý°ëÖᣬÓëyÖá½»ÓÚµãC£¬ÇÒOB=3OA£®
£¨1£©ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÉèÅ×ÎïÏߵĶ¥µãΪD£¬¹ýµãAµÄÖ±Ïßy=
1
2
x+
1
2
ÓëÅ×ÎïÏß½»ÓÚµãE£®ÎÊ£ºÔÚÅ×ÎïÏߵĶԳÆÖáÉÏÊÇ·ñ´æÔÚÕâÑùµÄµãF£¬Ê¹µÃ¡÷ABEÓëÒÔB¡¢D¡¢FΪ¶¥µãµÄÈý½ÇÐÎÏàËÆ£¬Èô´æÔÚ£¬Çó³öµãFµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©µãG£¨x£¬1£©ÔÚÅ×ÎïÏßÉÏ£¬Çó³ö¹ýµãA¡¢B¡¢GµÄÔ²µÄÔ²ÐĵÄ×ø±ê£®
£¨1£©ÓÉÌâÉèÌõ¼þ£¬ÉèA£¨-x0£¬0£©£¬B£¨3x0£¬0£©£¨x0£¾0£©£¬
Ôòx0=
m+1
2
£¬
¡àÓÉA£¨-x0£¬0£©£¬Öª(-
m+1
2
)
2
-(m+1)¡Á(-
m+1
2
)-m-2=0
£¬
¼´3m2+2m-5=0£¬
½âµÃm=1£¬»òm=-
5
3
£¨Éᣩ£®
¡àÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽΪy=x2-2x-3£®
£¨2£©ÔÚÅ×ÎïÏߵĶԳÆÖáÉÏ´æÔÚÕâÑùµÄµãF£¬Ê¹µÃ¡÷ABEÓëÒÔB¡¢D¡¢FΪ¶¥µãµÄÈý½ÇÐÎÏàËÆ£®¡ßÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽΪy=x2-2x-3£¬
¡àA£¨-1£¬0£©£¬B£¨3£¬0£©£¬D£¨1£¬-4£©£¬
¶Ô³ÆÖáΪֱÏßx=1£®
¡ß¹ýµãAµÄÖ±Ïßy=
1
2
x+
1
2
ÓëÅ×ÎïÏß½»ÓÚµãE£¬
¡à
y=x2-2x-3
y=
1
2
x+
1
2
£¬
½âµÃ
x=1
y=0
»ò
x=
7
2
y=
9
4
£¬
¡àµãEµÄ×ø±êΪ£¨
7
2
£¬
9
4
£©£®
¹ýµãE×÷EH¡ÍxÖáÓÚH
ÔÚRt¡÷AEHÖУ¬¿ÉÇóAE=
9
4
5
£®
Èô¶Ô³ÆÖáÓëÖ±Ïßy=
1
2
x+
1
2
½»ÓÚµãP£¬
¡àPµã×ø±êΪ£¨1£¬1£©
¡ß¶Ô³ÆÖáÓëxÖá´¹Ö±£¬½»µãΪµãM£¬
¡àÔÚRt¡÷BMDÖУ¬¿ÉÇóBD=2
5
£¬
ÔÚRt¡÷APMÖУ¬tan¡ÏPAM=
PM
AM
=
1
2
£¬
ÔÚRt¡÷BMDÖУ¬tan¡ÏMDB=
BM
DM
=
1
2
£¬
¡à¡ÏPAM=¡ÏMDB£®
ÓÉÌâÒ⣬ҪʹµÃÔÚÅ×ÎïÏߵĶԳÆÖáÉÏ´æÔÚµãF£¬Ê¹µÃ¡÷ABEÓëÒÔB¡¢D¡¢FΪ¶¥µãµÄÈý½ÇÐÎÏàËÆ£¬Ö»ÐèÒª
AB
AF
=
DB
DE1
»ò
AB
AE
=
DF2
DB
£®

¡à
4
9
5
4
=
2
5
DF1
£¬
½âµÃDF1=
45
8
£¬
¡àµãF1 µÄ×ø±êΪ£¨1£¬
13
8
£©£®
»ò
4
9
5
4
=
DF2
2
5
£¬
½âµÃ DF2=
32
9
£¬
¡àµãF2 µÄ×ø±êΪ£¨1£¬-
4
9
£©£®
×ÛÉÏ£¬·ûºÏÌâÒâµÄFµã×ø±êΪF(1£¬-
4
9
)»òF(1£¬
13
8
)
£®
£¨3£©¡ßµãG£¨x£¬1£©ÔÚÅ×ÎïÏßÉÏ
¡àµãGµÄ×ø±êΪ£¨1¡À
5
£¬1£©£¬
ÓÖ¡ßA¡¢B¡¢GÔÚͬһԲÉÏ
¡àÔ²ÐÄÒ»¶¨ÔÚÅ×ÎïÏߵĶԳÆÖáÉÏ
¡ßPA=PA=PG=
5
£¬
¡àµãP¼´Îª¹ýµãA¡¢B¡¢GµÄÔ²µÄÔ²ÐÄ
¡àµãPµÄ×ø±êΪ£¨1£¬1£©£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµãPÊÇÖ±½Ç×ø±êƽÃæÄڵĶ¯µã£¬µãPµ½Ö±Ïßl1£ºx=-2µÄ¾àÀëΪd1£¬µ½µãF£¨-1£¬0£©µÄ¾àÀëΪd2£¬ÇÒ
d2
d1
=
2
2
£®
£¨1£©Ç󶯵ãPËùÔÚÇúÏßCµÄ·½³Ì£»
£¨2£©Ö±Ïßl¹ýµãFÇÒÓëÇúÏßC½»ÓÚ²»Í¬Á½µãA¡¢B£¨µãA»òB²»ÔÚxÖáÉÏ£©£¬·Ö±ð¹ýA¡¢Bµã×÷Ö±Ïßl1£ºx=-2µÄ´¹Ïߣ¬¶ÔÓ¦µÄ´¹×ã·Ö±ðΪM¡¢N£¬ÊÔÅжϵãFÓëÒÔÏ߶ÎMNΪֱ¾¶µÄÔ²µÄλÖùØϵ£¨Ö¸ÔÚÔ²ÄÚ¡¢Ô²ÉÏ¡¢Ô²ÍâµÈÇé¿ö£©£»
£¨3£©¼ÇS1=S¡÷FAM£¬S2=S¡÷FMN£¬S3=S¡÷FBN£¨A¡¢B¡¢M¡¢NÊÇ£¨2£©Öеĵ㣩£¬ÎÊÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹S22=¦ËS1S3³ÉÁ¢£®Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
½øÒ»²½Ë¼¿¼ÎÊÌ⣺ÈôÉÏÊöÎÊÌâÖÐÖ±Ïßl1£ºx=-
a2
c
¡¢µãF£¨-c£¬0£©¡¢ÇúÏßC£º
x2
a2
+
y2
b2
=1(a£¾b£¾0£¬c=
a2-b2
)
£¬ÔòʹµÈʽS22=¦ËS1S3³ÉÁ¢µÄ¦ËµÄÖµÈÔ±£³Ö²»±ä£®Çë¸ø³öÄãµÄÅжÏ
 
 £¨Ìîд¡°²»ÕýÈ·¡±»ò¡°ÕýÈ·¡±£©£¨ÏÞÓÚʱ¼ä£¬ÕâÀï²»ÐèÒª¾Ù·´Àý£¬»òÖ¤Ã÷£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµãPÊÇÖ±½Ç×ø±êƽÃæÄڵĶ¯µã£¬µãPµ½Ö±Ïßl1£ºx=-2µÄ¾àÀëΪd1£¬µ½µãF£¨-1£¬0£©µÄ¾àÀëΪd2£¬ÇÒ
d2
d1
=
2
2
£®
£¨1£©Ç󶯵ãPËùÔÚÇúÏßCµÄ·½³Ì£»
£¨2£©Ö±Ïßl¹ýµãFÇÒÓëÇúÏßC½»ÓÚ²»Í¬Á½µãA¡¢B£¨µãA»òB²»ÔÚxÖáÉÏ£©£¬·Ö±ð¹ýA¡¢Bµã×÷Ö±Ïßl1£ºx=-2µÄ´¹Ïߣ¬¶ÔÓ¦µÄ´¹×ã·Ö±ðΪM¡¢N£¬ÊÔÅжϵãFÓëÒÔÏ߶ÎMNΪֱ¾¶µÄÔ²µÄλÖùØϵ£¨Ö¸ÔÚÔ²ÄÚ¡¢Ô²ÉÏ¡¢Ô²ÍâµÈÇé¿ö£©£»
£¨3£©¼ÇS1=S¡÷FAM£¬S2=S¡÷FMN£¬S3=S¡÷FBN£¨A¡¢B¡¢M¡¢NÊÇ£¨2£©Öеĵ㣩£¬ÎÊÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹
S
2
2
=¦ËS1S3
³ÉÁ¢£®Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¡¾Ñ¡×öÌâ¡¿ÔÚA£¬B£¬C£¬DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ðÌ⿨ָ¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
21-1£®£¨Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£©
ÉèMÊÇ°Ñ×ø±êƽÃæÉϵĵãµÄºá×ø±êÉ쳤µ½2±¶£¬×Ý×ø±êÉ쳤µ½3±¶µÄÉìѹ±ä»»£®
£¨1£©Çó¾ØÕóMµÄÌØÕ÷Öµ¼°ÏàÓ¦µÄÌØÕ÷ÏòÁ¿£»
£¨2£©ÇóÄæ¾ØÕóM-1ÒÔ¼°ÍÖÔ²
x2
4
+
y2
9
=1ÔÚM-1µÄ×÷ÓÃϵÄÐÂÇúÏߵķ½³Ì£®
21-2£®£¨Ñ¡ÐÞ4-4£º²ÎÊý·½³Ì£©
ÒÔÖ±½Ç×ø±êϵµÄÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣮÒÑÖªµãPµÄÖ±½Ç×ø±êΪ£¨1£¬-5£©£¬µãMµÄ¼«×ø±êΪ£¨4£¬
¦Ð
2
£©£¬ÈôÖ±Ïßl¹ýµãP£¬ÇÒÇãб½ÇΪ 
¦Ð
3
£¬Ô²CÒÔMΪԲÐÄ¡¢4Ϊ°ë¾¶£®
£¨1£©ÇóÖ±Ïßl¹ØÓÚtµÄ²ÎÊý·½³ÌºÍÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÊÔÅж¨Ö±ÏßlºÍÔ²CµÄλÖùØϵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

[Ñ¡×öÌâ]ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¼Æ20·Ö£®Çë°Ñ´ð°¸Ð´ÔÚ´ðÌâÖ½µÄÖ¸¶¨ÇøÓòÄÚ£®
A£®£¨Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²£©
Èçͼ£¬Ô²OµÄÖ±¾¶AB=8£¬CΪԲÖÜÉÏÒ»µã£¬BC=4£¬¹ýC×÷Ô²µÄÇÐÏßl£¬¹ýA×÷Ö±ÏßlµÄ´¹ÏßAD£¬DΪ´¹×㣬ADÓëÔ²O½»ÓÚµãE£¬ÇóÏ߶ÎAEµÄ³¤£®
B£®£¨Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£©
ÒÑÖª¶þ½×¾ØÕóAÓÐÌØÕ÷Öµ¦Ë1=3¼°Æä¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿¦Á1=
1
1
£¬ÌØÕ÷Öµ¦Ë2=-1¼°Æä¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿¦Á2=
1
-1
£¬Çó¾ØÕóAµÄÄæ¾ØÕóA-1£®
C£®£¨Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÒÔƽÃæÖ±½Ç×ø±êϵµÄÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¨Á½ÖÖ×ø±êϵÖÐÈ¡ÏàͬµÄµ¥Î»³¤¶È£©£¬ÒÑÖªµãAµÄÖ±½Ç×ø±êΪ£¨-2£¬6£©£¬µãBµÄ¼«×ø±êΪ(4£¬
¦Ð
2
)
£¬Ö±Ïßl¹ýµãAÇÒÇãб½ÇΪ
¦Ð
4
£¬Ô²CÒÔµãBΪԲÐÄ£¬4Ϊ°ë¾¶£¬ÊÔÇóÖ±ÏßlµÄ²ÎÊý·½³ÌºÍÔ²CµÄ¼«×ø±ê·½³Ì£®
D£®£¨Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£©
Éèa£¬b£¬c£¬d¶¼ÊÇÕýÊý£¬ÇÒx=
a2+b2
£¬y=
c2+d2
£®ÇóÖ¤£ºxy¡Ý
(ac+bd)(ad+bc)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÄÏͨ¶þÄ££©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚƽÃæÖ±½Ç×ø±êxOyÖУ¬ÒÑÖªÔ²C1£ºx2+y2=4£¬Ô²C2£º(x-2)2+y2=4£®
£¨1£©ÔÚÒÔOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬·Ö±ðÇóÔ²C1£¬C2µÄ¼«×ø±ê·½³Ì¼°ÕâÁ½¸öÔ²µÄ½»µãµÄ¼«×ø±ê£»
£¨2£©ÇóÔ²C1ÓëC2µÄ¹«¹²ÏҵIJÎÊý·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸