分析 根据向量数量积的定义和公式转化为投影的关系进行求解即可.
解答
解:取AB的中点D,则AD是向量$\overrightarrow{AC}$在$\overrightarrow{AB}$上的投影,
则$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cos<$\overrightarrow{AB}$,$\overrightarrow{AC}$>=|$\overrightarrow{AB}$|•|$\overrightarrow{AD}$|=4×2=8,
故答案为:8
点评 本题主要考查向量数量积的应用,根据向量数量积的公式结合向量投影的定义进行转化是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若p∧q为假命题,则p、q均为假命题 | |
| B. | 函数f(x)=x2-x-6的零点是(3,0)或(-2,0) | |
| C. | 对于命题p:?x∈R,使得x2-x-6>0,则¬p:?x∈R,均有x2-x-6≤0 | |
| D. | 命题“若x2-x-6=0,则x=3”的否命题为“若x2-x-6=0,则x≠3” |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com