精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\left\{\begin{array}{l}{f(x+5),x>2}\\{a{e}^{x},-2≤x≤2}\\{f(-x),x<-2}\end{array}$,若f(-2016)=e,则a=(  )
A.2B.1C.-1D.-2

分析 由已知条件利用分段函数的性质先由函数的周期性求出f(2016)=f(1),再由指数的性质能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{f(x+5),x>2}\\{a{e}^{x},-2≤x≤2}\\{f(-x),x<-2}\end{array}$,f(-2016)=e,x>2时,函数是周期函数,周期为5,
f(-2016)=f(2016)=f(2015+1)=f(1)=ae=e,
∴a=1
故选:B.

点评 本题考查函数值的求法,抽象函数的应用,是基础题,解题时要认真审题,解题时要认真审题,注意分段函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知f(x)=$\frac{2^x}{{{2^x}+1}}$+ax,若f(ln3)=2,则f(ln$\frac{1}{3}$)等于(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知:函数f(x)=$\frac{sin2x}{e^x}$的图象在(0,f(0))处的切线恰好是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的一条渐近线,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={x|x>1},B={x|x>2},则(  )
A.A⊆BB.B⊆AC.A∩B={x|x>0}D.A∪B={x|x>0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出一个如图所示的程序框图,若要使输入的x值与输出的y值相等,则这样的x值的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图所示,圆C中,弦AB的长度为4,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数f(x)=2sin($\frac{x}{3}$+$\frac{π}{6}$)的图象向左平移$\frac{π}{4}$个单位,再向上平移3个单位,得到函数g(x)的图象,则g(x)的解析式为(  )
A.g(x)=2sin($\frac{x}{3}$-$\frac{π}{4}$)-3B.g(x)=2sin($\frac{x}{3}$+$\frac{π}{4}$)+3C.g(x)=2sin($\frac{x}{3}$-$\frac{π}{12}$)+3D.g(x)=2sin($\frac{x}{3}$-$\frac{π}{12}$)-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设U=R,若集合A={0,1,2},B={x|x2-2x-3>0},则A∩∁UB=(  )
A.{0,1}B.{0,2}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足:${a_{n+1}}=a_n^2-2(n∈N*)$,且${a_1}=a+\frac{1}{a}(0<a<1)$.
(Ⅰ)证明:an+1>an
(Ⅱ)若不等式$\frac{1}{a_1}+\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_1}{a_2}{a_3}}}+…+\frac{1}{{{a_1}{a_2}{a_3}…{a_n}}}<\frac{1}{2}$对任意n∈N*都成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案