精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交BC于点E,AB=2AC,
(1)求证:BE=2AD;
(2)求函数AC=1,EC=2时,求AD的长.
分析:(1)连接DE,因为ACED是圆的内接四边形,所以△BDE∽△BCA,由此能够证明BE=2AD.
(2)由条件得AB=2AC=2,根据割线定理得BD•BA=BE•BC,即(AB-AD)•BA=2AD•(2AD+CE),由此能求出AD.
解答:(1)证明:连接DE,
∵ACED是圆的内接四边形,
∴∠BDE=∠BCA,
∵∠DBE=∠CBA,
∴△BDE∽△BCA,
BE
BA
=
DE
CA

∵AB=2AC,
∴BE=2DE.
∵CD是∠ACB的平分线,
∴AD=DE,
从而BE=2AD.(5分)
(2)解:由条件得AB=2AC=2,
设AD=t,根据割线定理得
BD•BA=BE•BC,
∴(AB-AD)•BA=2AD•(2AD+CE),
∴(2-t)×2=2t(2t+2),
∴2t2+3t-2=0,
解得t=
1
2
,即AD=
1
2
.(10分)
点评:本题考查与圆有关的比例线段的应用,是中档题.解题时要认真审题,仔细解答,注意圆的内接四边形的性质和切割线定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案