精英家教网 > 高中数学 > 题目详情
正方体-中,与平面所成角的余弦值为             .

试题分析:设上下底面的中心分别为O1,O,则O1O与平面ACD1所成角就是BB1与平面ACD1所成角,cos∠O1OD1=
点评:本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D到平面ACD1的距离是解决本题的关键所在,这也是转化思想的具体体现.注:线面角的范围为:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

正四棱锥(底面为正方形,顶点在底面上的射影是底面的中心)的底面边长为2,高为2,为边的中点,动点在表面上运动,并且总保持,则动点的轨迹的周长为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是三个不同的平面,则下列命题中的真命题是(   )
A.若,则B.
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条不同的直线,两个不同的平面,则下列命题中正确的是(     )
A.若
B.若
C.若
D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线m,n与平面α,β,给出下列三个命题:
①若m∥α,n∥α,则m∥n;
②若m∥α,n⊥α,则n⊥m;
③若m⊥α,m∥β,则α⊥β.
其中真命题的个数是______个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)如图,在长方体ABCD-A1B1C1D1中,E, F分别是棱BC,CC1上的点,CF="AB=2CE," AB:AD:AA1=1:2:4.

(Ⅰ)求异面直线EF与A1D所成角的余弦值;
(Ⅱ)证明AF⊥平面A1ED;
(Ⅲ)求二面角A1-ED-F的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,的中点.

(1)求证:平行平面
(2)求二面角的余弦值;
(3)试问线段上是否存在点,使角?若存在,确定点位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图4,已知四棱锥,底面是正方形,,点的中点,点的中点,连接,.

(1)求证:
(2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,平行四边形中,沿折起到的位置,使平面平面

(I)求证:;     
(Ⅱ)求三棱锥的侧面积.

查看答案和解析>>

同步练习册答案