精英家教网 > 高中数学 > 题目详情
20.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{8}{3}$B.$\frac{16}{3}$C.16D.8

分析 由三视图得到几何体是三棱柱,明确底面和高,计算体积.

解答 解:由已知得到几何体的平放的三棱柱,其中底面为直角三角形,底面的直角边分别为2,4 的直角三角形,高为2,如图
所以体积为$\frac{1}{2}×4×2×2$=8;
故选:D.

点评 本题考查了由几何体的三视图求体积;关键是正确还原几何体形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sin($\frac{π}{6}$-2x)-2sin2x+1,若f(x)=Asin(2x+φ),且A≥0,0≤φ<2π,求满足条件的A,φ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知i是虚数单位,则复数$i+\frac{1}{1-i}$=(  )
A.1+3iB.$\frac{1}{2}+\frac{3}{2}i$C.1-3iD.$\frac{1}{2}-\frac{3}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A(-2,4),B(3,-1),C (-3,-4)且$\overrightarrow{CM}$=3$\overrightarrow{CA}$,$\overrightarrow{CN}$=2$\overrightarrow{CB}$,求点M、N及$\overrightarrow{MN}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知:函数f(x)=loga$\frac{1-x}{1+x}$(a>0且a≠1),
(1)求f(x)的定义域;
(2)解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平面直角坐标系中,由|x|+|y|≤2所表示的区域记为A,由区域A及抛物线y=x2围成的公共区域记为B,随机往区域A内投一个点M,则点M落在区域B内的概率是(  )
A.$\frac{7}{48}$B.$\frac{11}{12}$C.$\frac{7}{24}$D.$\frac{19}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知O是△ABC所在平面内一点,D为BC边中点,且2$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,那么△ABC面积是△OBD面积的(  )倍.
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.为了解某地区居民用水情况,通过抽样,获得了100位居民每人的月均用水量(单位:吨),将数据按照[0,1],[1,2),…[4,5]分成5组,制成了如图所示的频率分布直方图.
(1)估计这100位居民月均用水量的样本平均数$\overline{x}$和样本方差s2(同一组数据用该区间的中点值作代表,保留1位小数).
(2)根据以上抽样调查数据,能否认为该地区居民每人的月均用水量符合“月均用水量超过3吨的人数不能占全部人数30%”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.(1-i)(2+i)=(  )
A.1-iB.3-iC.1+3iD.3+i

查看答案和解析>>

同步练习册答案