精英家教网 > 高中数学 > 题目详情
8.已知A(-2,4),B(3,-1),C (-3,-4)且$\overrightarrow{CM}$=3$\overrightarrow{CA}$,$\overrightarrow{CN}$=2$\overrightarrow{CB}$,求点M、N及$\overrightarrow{MN}$的坐标.

分析 根据题意,设出点M、N的坐标,结合A、B的坐标计算可得向量$\overrightarrow{CA}$、$\overrightarrow{CM}$、$\overrightarrow{CB}$、$\overrightarrow{CN}$的坐标,又由$\overrightarrow{CM}$=3$\overrightarrow{CA}$,$\overrightarrow{CN}$=2$\overrightarrow{CB}$,结合数乘向量的坐标计算公式可得M、N的坐标,进而有向量的坐标公式计算可得$\overrightarrow{MN}$的坐标.

解答 解:根据题意,设M(a,b),N(m,n),A(-2,4),B(3,-1),C (-3,-4),
则$\overrightarrow{CA}$=(-1,8),$\overrightarrow{CM}$=(a+3,b+4),$\overrightarrow{CB}$=(6,3),$\overrightarrow{CN}$=(m+3,n+4)
若$\overrightarrow{CM}$=3$\overrightarrow{CA}$,则有$\left\{\begin{array}{l}{a+3=-3}\\{b+4=24}\end{array}\right.$,解可得a=-6,b=20,即M(-6,20),
若$\overrightarrow{CN}$=2$\overrightarrow{CB}$,则有$\left\{\begin{array}{l}{m+3=12}\\{n+4=6}\end{array}\right.$,解可得m=9,n=2,即N(9,2);
$\overrightarrow{MN}$=(15,-18).

点评 本题考查数乘向量的坐标运算,关键是掌握数乘向量的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.关于函数$f(x)={log_{\frac{1}{2}}}|{\;x\;}|$,下列结论正确的是(  )
A.值域为(0,+∞)B.图象关于x轴对称
C.定义域为RD.在区间(-∞,0)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,a,b,c分别为角A,B,C 的对边,若a+b=2,c=1,则角C 的最大值为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.集合A={x∈Z|(x+1)(x-2)≤0},B={x|x>0},则集合A∩B的元素个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若正实数m,n满足mn=1,证明:$\frac{1}{{e}^{m-1}}$+$\frac{1}{{e}^{n-1}}$<2(m+n).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\left\{\begin{array}{l}{|lgx|,(x>0)}\\{-{x}^{2}-2x,(x≤0)}\end{array}\right.$,若f(a)=f(b)=f(c)=f(d)(其中a<b<c<d),则a+b+c+d的取值范围是(0,$\frac{81}{10}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{8}{3}$B.$\frac{16}{3}$C.16D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个几何体的三视图如图所示,其俯视图圆的半径为3,则该几何体的体积为(  )
A.24πB.36πC.40πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△A BC中内角A,B,C所对各边分别为a,b,c,且a2=b2+c2-bc,则角A=(  )
A.60°B.120°C.30°D.150°

查看答案和解析>>

同步练习册答案