【题目】如图,在四棱锥
中,四边形
为矩形,平面
平面
,
为
中点,
.
![]()
(1)求证:
;
(2)若
与平面
所成的角为
,求二面角
的大小.
【答案】(1)证明见解析;(2)
.
【解析】
(1)由面面垂直的性质定理可得出
平面
,可得出
,由等腰三角形三线合一的性质可得出
,由此可得出
平面
,进而得出
;
(2)设
,可得出
,
,由(1)可知,
与平面
所成的角为
,可得
,进而以点
为坐标原点,
、
、
所在直线分别为
、
、
轴建立空间直角坐标系,利用空间向量法可求出二面角
的大小.
(1)
四边形
为矩形,则
,
平面
平面
,平面
平面
,
平面
,
所以
面
,
平面
,
,
又
,
为
中点,
,
,
平面
,
平面
,故
;
![]()
(2)不妨设
,由
得
,由(1)得
,∴
,∴
,由(1)得
平面
,
由(1)知,
在平面
的射影为
,即
,
,故
.
以点
为坐标原点,
、
、
所在直线分别为
、
、
轴建立如下图所示的空间直角坐标系
,
![]()
易得
、
、
、
,
,
,
,
,
设平面
与平面
的法向量分别为
和
,
则
,
由
,令
,则
,
,
,
,设二面角
的大小为
,则
,所以二面角
的大小![]()
科目:高中数学 来源: 题型:
【题目】2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行.若用
和
分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用
和
分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①
;②
;③
;④
.其中正确式子的序号是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在水平地面上的不同两点处栽有两根笔直的电线杆,假设它们都垂直于地面,则在水平地面上视它们上端仰角相等的点
的轨迹可能是( )
①直线 ②圆 ③椭圆 ④抛物线
A.①②B.①③C.①②③D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,直线
的参数方程为
(
为参数).
(1)求
与
的交点的直角坐标;
(2)求
上的点到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的左、右顶点分别为
,上、下顶点分别为
,左、右焦点分别为
,
,离心率为
.
(1)求椭圆
的方程;
(2)过右焦点
的直线
与椭圆
相交于
两点,试探究在
轴上是否存在定点
,使得可
为定值?若存在,求出点
的坐标,若不存在,请说明理由?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知平行于
轴的动直线
交抛物线
:
于点
,点
为
的焦点.圆心不在
轴上的圆
与直线
,
,
轴都相切,设
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若直线
与曲线
相切于点
,过
且垂直于
的直线为
,直线
,
分别与
轴相交于点
,
.当线段
的长度最小时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,(x>0).
(1)当0<a<b,且f(a)=f(b)时,求证:ab>1;
(2)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.
(3)若存在实数a,b(a<b),使得函数y=f(x)的定义域为[a,b]时,值域为[ma,mb](m≠0),求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学老师给出一个函数
,甲、乙、丙、丁四个同学各说出了这个函数的一条性质:甲:在
上函数单调递减;乙:在
上函数单调递增;丙:在定义域R上函数的图象关于直线
对称;丁:
不是函数的最小值.老师说:你们四个同学中恰好有三个人说的正确.那么,你认为____说的是错误的.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校将甲、乙等6名新招聘的老师分配到4个不同的年级,每个年级至少分配1名教师,且甲、乙两名老师必须分到同一个年级,则不同的分法种数为______
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com