精英家教网 > 高中数学 > 题目详情
已知偶函数f(x)(x∈R),当时,f(x)= -x(2+x),当时,f(x)=(x-2)(a-x)().关于偶函数f(x)的图象G和直线:y=m()的3个命题如下:
当a=2,m=0时,直线与图象G恰有3个公共点;
当a=3,m=时,直线与图象G恰有6个公共点;
,使得直线与图象G交于4个点,且相邻点之间的距离相等.其中正确命题的序号是(A)
A. ①②     B. ①③     C. ②③     D. ①②③
A

试题分析:根据题意,由于偶函数f(x)(x∈R),当时,f(x)= -x(2+x),当时,f(x)=(x-2)(a-x)(),那么可知函数当a=2,m=0时,则可知时,f(x)=(x-2)(2-x)=-(2-x),那么可知偶函数关于y轴对称,则可知偶函数f(x)的图象G和直线:y=0()的交点为3个,故命题1成立,对于,当a=3,m=时,直线与图象G恰有6个公共点;成立,对于,使得直线与图象G交于4个点,且相邻点之间的距离相等,错误故选A.
点评:主要是考查了函数性质的运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

对于函数,若,则称为函数的“不动点”;若,则称为函数的“稳定点”.如果函数的“稳定点”恰是它的“不动点”,那么实数的取值范围是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,直线与函数的图像都相切,且与函数的图像的切点的横坐标为1.  
(1)求直线的方程及的值;
(2)若(其中的导函数),求函数的最大值;
(3)当时,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设命题:函数上为减函数, 命题的值域为,命题函数定义域为
(1)若命题为真命题,求的取值范围。
(2)若为真命题,为假命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数的定义域为,若存在非零实数使得对于任意,有,且,则称上的高调函数,如果定义域为的函数是奇函数,当时,,且上的高调函数,那么实数的取值范围是         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ) 若直线y=kx+1与f (x)的反函数的图像相切, 求实数k的值;
(Ⅱ) 设x>0, 讨论曲线y=f (x) 与曲线 公共点的个数.
(Ⅲ) 设a<b, 比较的大小, 并说明理由.   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数表示中的较大值,表示中的较小值,记得最小值为得最小值为,则(      )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某公司一年购买某种货物200吨,分成若干次均匀购买,每次购买的运费为2万元,一年存储费用恰好与每次的购买吨数的数值相等(单位:万元),要使一年的总运费与总存储费用之和最小,则应购买________次.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处有极大值7.
(Ⅰ)求的解析式;(Ⅱ)求=1处的切线方程.

查看答案和解析>>

同步练习册答案