精英家教网 > 高中数学 > 题目详情
14.若m是2和8的等比中项,则圆锥曲线$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{m}$=1的离心率是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{2}$或$\frac{\sqrt{21}}{3}$D.$\frac{\sqrt{3}}{3}$或$\frac{\sqrt{21}}{3}$

分析 由等比中项的概念列式求得m值,然后分m=4和m=-4求得圆锥曲线的离心率.

解答 解:∵m是2和8的等比中项,
∴m2=16,得m=±4.
若m=4,则圆锥曲线方程为$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}=1$,表示焦点在y轴上的椭圆,
此时a=2,c=$\sqrt{{a}^{2}-{b}^{2}}=1$,椭圆离心率为e=$\frac{c}{a}=\frac{1}{2}$;
若m=-4,则圆锥曲线方程为$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{4}=1$,表示焦点在x轴上的双曲线,
此时a=$\sqrt{3}$,c=$\sqrt{{a}^{2}+{b}^{2}}=\sqrt{7}$,双曲线离心率e=$\frac{\sqrt{7}}{\sqrt{3}}=\frac{\sqrt{21}}{3}$.
∴圆锥曲线$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{m}$=1的离心率是$\frac{1}{2}$或$\frac{\sqrt{21}}{3}$.
故选:C.

点评 本题考查椭圆与双曲线的标准方程,考查椭圆与双曲线的简单性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知非零向量$\overrightarrow a,\overrightarrow b$满足:$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow a+\overrightarrow b}|$,$({\overrightarrow a+\overrightarrow b})⊥({2\overrightarrow a+λ\overrightarrow b})$,则实数λ的值为(  )
A.1B.$\sqrt{3}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),x=$\sqrt{3}$y为双曲线C的一条渐近线,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知正三棱锥P-ABC的侧棱长为2,若二面角P-AB-C的余弦值为$\frac{{\sqrt{13}}}{13}$,则三棱锥P-ABC的体积为(  )
A.$\frac{3}{4}$B.$\frac{{2\sqrt{2}}}{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{{2\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f'(x)是奇函数f(x)的导函数,f(-1)=0,当x>0时,f′(x)<$\frac{f(x)}{x}$,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.$8+2\sqrt{5}$B.$6+2\sqrt{5}$C.$8+2\sqrt{3}$D.$6+2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$\overrightarrow m=(cos\frac{x}{2},sin\frac{x}{2})$,$\overrightarrow n=(-\sqrt{3},1)$,则$|\overrightarrow m-\overrightarrow n|$的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD的一个侧面PAD为等边三角形,且平面PAD⊥平面ABCD,四边形ABCD是平行四边形,AD=2,AB=4,BD=2$\sqrt{3}$
(1)求证;PA⊥BD
(2)求二面角D-BC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知奇函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的导函数的部分图象如图所示,E是最高点,且△MNE是边长为1的正三角形,那么$f({\frac{1}{3}})$=(  )
A.$-\frac{{\sqrt{3}}}{2π}$B.$-\frac{1}{2}$C.$\frac{1}{4}$D.$-\frac{3}{4π}$

查看答案和解析>>

同步练习册答案