精英家教网 > 高中数学 > 题目详情
3.如图,四棱锥P-ABCD的一个侧面PAD为等边三角形,且平面PAD⊥平面ABCD,四边形ABCD是平行四边形,AD=2,AB=4,BD=2$\sqrt{3}$
(1)求证;PA⊥BD
(2)求二面角D-BC-P的余弦值.

分析 (1)由面面垂直的性质得BD⊥面PAD,即可证得DB⊥PA.
(2)二面角D-BC-P的余弦值即二面角A-BC-P的余弦值,作PO⊥AD于O,则PO⊥面ABCD.过O作OE⊥BC于E,连接PE,则∠PEO为二面角A-BC-P的平面角,在△PEO中,求得cos∠PEO=$\frac{2\sqrt{3}}{\sqrt{15}}=\frac{2\sqrt{5}}{5}$,即可得二面角D-BC-P的余弦值

解答 解:(1)在△ABD中,AD⊥DB,
由平面PAD⊥平面ABCD,∴BD⊥面PAD,∴DB⊥PA.
(2)二面角D-BC-P的余弦值即二面角A-BC-P的余弦值,
作PO⊥AD于O,则PO⊥面ABCD.
过O作OE⊥BC于E,连接PE,则∠PEO为二面角A-BC-P的平面角.
又△PEO中,PO=$\sqrt{3}$,OE=DB=2$\sqrt{3}$,故PE=$\sqrt{15}$,
cos∠PEO=$\frac{2\sqrt{3}}{\sqrt{15}}=\frac{2\sqrt{5}}{5}$,
∴二面角D-BC-P的余弦值为$\frac{2\sqrt{5}}{5}$.

点评 本题考查了空间线线位置关系,面面角的求解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设函数$f(x)=\left\{\begin{array}{l}{x^3}-{x^2},x>0\\ ax{e^x},x≤0\end{array}\right.$,其中a>0.
(1)若直线y=m与函数f(x)的图象在(0,2]上只有一个交点,求m的取值范围;
(2)若f(x)≥-a对x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若m是2和8的等比中项,则圆锥曲线$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{m}$=1的离心率是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{2}$或$\frac{\sqrt{21}}{3}$D.$\frac{\sqrt{3}}{3}$或$\frac{\sqrt{21}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为4π,且对?x∈R,有f(x)≤f($\frac{2π}{3}$)成立,则关于函数f(x)的下列说法中正确的是(  )
①φ=$\frac{π}{6}$
②函数f(x)在区间[-π,π]上递减;
③把g(x)=sin$\frac{x}{2}$的图象向左平移$\frac{π}{3}$得到f(x)的图象;
④函数f(x+$\frac{4π}{3}$)是偶函数.
A.①③B.①②C.②③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=|sinx|+cosx,现有如下几个命题:
①该函数为偶函数;
②该函数最小正周期为$\frac{π}{2}$;
③该函数值域为$[-1,\sqrt{2}]$;
④若定义区间(a,b)的长度为b-a,则该函数单调递增区间长度的最大值为$\frac{3π}{4}$.
其中正确命题为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在直三棱柱ABC-A1B1C1中,四边形ABB1A1是边长为$\sqrt{3}$的正方形,BC=3,D为BC上的一点,且平面ADB1⊥平面BCC1B1
(1)求证:AD⊥平面BCC1B1
(2)若B1D与平面ABC所成角为60°,求三棱锥A1-CB1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左焦点为F,若点F关于直线$y=-\frac{1}{2}x$的对称点P在椭圆C上,则椭圆C的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,则该几何体的体积是(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知不等式组$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$表示的平面区域为D,若存在x∈D,使得y=x+$\frac{mx}{|x|}$,则实数m的取值范围是[-2,2).

查看答案和解析>>

同步练习册答案