精英家教网 > 高中数学 > 题目详情
12.某几何体的三视图如图所示,则该几何体的体积是(  )
A.πB.C.D.

分析 由三视图得到几何体为一个圆柱挖去一个圆锥得到的三视图,由图中数据计算体积.

解答 解:由三视图得到几何体是一个圆柱挖去一个圆锥,所以体积为$π×{1}^{2}×3-\frac{1}{3}π×{1}^{2}×3=2π$;
故选B

点评 本题考查了几何体的三视图;关键是正确还原几何体.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知正三棱锥P-ABC的侧棱长为2,若二面角P-AB-C的余弦值为$\frac{{\sqrt{13}}}{13}$,则三棱锥P-ABC的体积为(  )
A.$\frac{3}{4}$B.$\frac{{2\sqrt{2}}}{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{{2\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD的一个侧面PAD为等边三角形,且平面PAD⊥平面ABCD,四边形ABCD是平行四边形,AD=2,AB=4,BD=2$\sqrt{3}$
(1)求证;PA⊥BD
(2)求二面角D-BC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(a-1)x+1在区间(1,+∞)上为增函数,则实数a的取值范围是(  )
A.[2,+∞)B.(2,+∞)C.(-∞,2]D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,若$\overrightarrow a与\overrightarrow b的夹角为\frac{π}{3}$,则$\overrightarrow a•({\overrightarrow a+\overrightarrow b})$的值等于(  )
A.4B.5C.6D.$4+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,在地面上有一旗杆OP,为测得它的高度h,在地面上取一线段AB,
AB=20m,在A处测得P点的仰角∠OAP=30°,在B点测得P点的仰角∠OBP=45°,又测得∠AOB=30°,求旗杆的高度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知奇函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的导函数的部分图象如图所示,E是最高点,且△MNE是边长为1的正三角形,那么$f({\frac{1}{3}})$=(  )
A.$-\frac{{\sqrt{3}}}{2π}$B.$-\frac{1}{2}$C.$\frac{1}{4}$D.$-\frac{3}{4π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={(x,y)|y2<x},B={(x,y)|xy=-2,x∈Z,y∈Z},则A∩B=(  )
A.B.{(2,-1)}C.{(-1,2),(-2,1)}D.{(1,-2),(-1,2),(-2,1)}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱柱ABC-A1B1C1中,侧面A1ABB1是菱形,侧面C1CBB1是矩形.
(1)D是棱B1C1上一点,AC1∥平面A1BD,求证:D为B1C1的中点;
(2)若A1B⊥AC1,求证:平面A1ABB1⊥平面C1CBB1

查看答案和解析>>

同步练习册答案