1£®ÉèµãM£¨x£¬y£©Âú×ã²»µÈʽ×é$\left\{\begin{array}{l}{3x-y-6¡Ü0}\\{x-y+2¡Ý0}\\{x¡Ý0£¬y¡Ý0}\end{array}\right.$£¬µãP£¨$\frac{1}{a}$£¬$\frac{1}{b}$£©£¨a£¾0£¬b£¾0£©£¬µ±$\overrightarrow{OP}$•$\overrightarrow{OM}$×î´óʱ£¬µãMΪ£¨¡¡¡¡£©
A£®£¨0£¬2£©B£®£¨0£¬0£©C£®£¨4£¬6£©D£®£¨2£¬0£©

·ÖÎö ÓÉÌâÒâ×÷Æ½ÃæÇøÓò£¬´Ó¶ø»¯¼ò$\overrightarrow{OP}$•$\overrightarrow{OM}$=£¨$\frac{1}{a}$£¬$\frac{1}{b}$£©•£¨x£¬y£©=$\frac{x}{a}$+$\frac{y}{b}$£¬´Ó¶øÈ·¶¨×î´óֵʱµÄµã¼´¿É£®

½â´ð ½â£ºÓÉÌâÒâ×÷Æ½ÃæÇøÓòÈçÏ£¬
£¬
$\overrightarrow{OP}$•$\overrightarrow{OM}$=£¨$\frac{1}{a}$£¬$\frac{1}{b}$£©•£¨x£¬y£©=$\frac{x}{a}$+$\frac{y}{b}$£¬
¹Êµ±x£¬y¶¼ÓÐ×î´óֵʱ£¬
¼´x=4£¬y=6ʱ£¬ÓÐ×î´óÖµ£»
¹ÊÑ¡C£®

µãÆÀ ±¾Ì⿼²éÁËÏßÐԹ滮µÄ½â·¨¼°ÊýÐνáºÏµÄ˼Ïë·½·¨Ó¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{{\begin{array}{l}{x+y¡Ü2}\\{x-y¡Ü2}\\{x¡Ý1}\end{array}}\right.$£¬ÄÇôz=2x+yµÄ×îСֵÊÇ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®¼ºÖª$\overrightarrow{a}$=£¨sinx£¬cos2x-sin2x£©£¬$\overrightarrow{b}$=£¨cosx£¬$\frac{\sqrt{3}}{2}$£©£¬º¯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚÇø¼ä[-$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{4}$]ÉϵÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×óÓÒ¶¥µã·Ö±ðΪA¡¢B£¬ÐéÖáµÄ¶ËµãÔÚÒÔÔ­µãΪԲÐÄ£¬|AB|Ϊֱ¾¶µÄÔ²ÉÏ£¬PΪ¸ÃË«ÇúÏßÉÏÒ»µã£¬ÈôÖ±ÏßPBµÄбÂÊΪ$\sqrt{2}$£¬ÔòÖ±ÏßPAµÄбÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{\sqrt{2}}{2}$C£®$\frac{\sqrt{3}}{3}$D£®$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®º¯Êýf£¨x£©=Asin£¨x+¦Õ£©£¨A£¾0£©ÔÚx=$\frac{¦Ð}{3}$´¦È¡µÃ×îСֵ£¬Ôò£¨¡¡¡¡£©
A£®f£¨x+$\frac{¦Ð}{3}$£©ÊÇÆæº¯ÊýB£®f£¨x+$\frac{¦Ð}{3}$£©ÊÇżº¯ÊýC£®f£¨x-$\frac{¦Ð}{3}$£©ÊÇÆæº¯ÊýD£®f£¨x-$\frac{¦Ð}{3}$£©ÊÇżº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÈôÊýÁÐ{an}Âú×㣺a1=0£¬a2=3ÇÒ£¨n-1£©an+1=£¨n+1£©an-nÊ®1£¨n¡ÊN*£¬n¡Ý2£©£¬ÊýÁÐ{bn}Âú×ãbn=$\sqrt{{a}_{n}+1}$•$\sqrt{{a}_{n+1}+1}$•£¨$\frac{8}{11}$£©n-1£¬ÔòÊýÁÐ{bn}µÄ×î´óÏîΪµÚ6Ï

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÊýÁÐ{an}µÄͨÏʽΪan=2n-1£¬ÔòǰnÏîºÍSn=£¨¡¡¡¡£©
A£®n2-1B£®n2C£®n2+1D£®£¨n+1£©2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èô$\frac{¦Á}{2}$ÊǵÚËÄÏóÏ޽ǣ¬ÇÒsin$\frac{¦Á}{2}$=-$\frac{\sqrt{3}}{3}$£¬Ôòcos¦Á=$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÔÚÖ±ÈýÀâÖùÖУ¬¡ÏACB=90¡ã£¬AC=BC=1£¬²àÀâAA1=$\sqrt{2}$£¬MΪA1B1µÄÖе㣬ÔòAMÓëÆ½ÃæAA1C1CËù³É½ÇµÄÕýÇÐֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{\sqrt{3}}{3}$C£®$\frac{\sqrt{2}}{3}$D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸