精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x+1}-1,x≤0}\\{|lg\frac{1}{x}|,x>0}\end{array}\right.$,若g(x)=f(x)-a有两个零点,则实数a的取值范围为(1,+∞)∪{0}.

分析 作出f(x)的函数图象,根据函数图象判断a的范围.

解答 解:作出f(x)的函数图象如图所示:

由图象可知当-1<a<0时,g(x)=f(x)-a有1个零点,
当0<a≤1时,g(x)=f(x)-a有3个零点,
当a>1或a=0时,g(x)=f(x)-a有2个零点.
故答案为:(1,+∞)∪{0}.

点评 本题考查了函数零点与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知复数z=(m-1)+(m2+2m-3)i,m≥0,
(Ⅰ)若z是纯虚数,求m的值;
(Ⅱ)若z+$\overline{z}$=2,求z;
( III)在复平面中,设复数z对应的点为P,当m变化时,求动点P的轨迹的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,右顶点为A(2,0).
(1).求椭圆C的方程;
(2).过点P(0,2)的直线l交椭圆于M、N两点,以线段M、N为直径的圆恰好过原点,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若(2x-1)2017=a0+a1x+a2x2+…+a2017x2017,则a0+a1+2a2+…+2017a2017=4033.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=sin(x+$\frac{kπ}{2}$),x∈[$\frac{kπ}{2}$,$\frac{(k+1)π}{2}$],k∈Z,①函数f(x)的最小正周期为2π;②函数f(x)值域为[-1,1];③函数f(x)为奇函数;④函数f(x)与y=$\frac{x}{10}$有7个交点.其中正确的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$=(4,5cosα),$\overrightarrow{b}$=(3,-4tanα).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求sinα的值;
(2)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,且α为锐角,求cos(2α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}满足$\frac{a_1}{2}•\frac{a_2}{5}•\frac{a_3}{8}…\frac{a_n}{3n-1}=3n+2(n∈{N^*})$,Sn为{an}的前n项和,则S10=(  )
A.210B.180C.185D.190

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,3,则输出v的值为(  )
A.16B.18C.48D.143

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和圆x2+y2=($\frac{b}{2}$+c)2,(c为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是(  )
A.($\frac{\sqrt{2}}{5}$,$\frac{3}{5}$)B.($\frac{\sqrt{2}}{5}$,$\frac{\sqrt{5}}{5}$)C.($\frac{\sqrt{5}}{5}$,$\frac{3}{5}$)D.(0,$\frac{\sqrt{5}}{5}$)

查看答案和解析>>

同步练习册答案