精英家教网 > 高中数学 > 题目详情
11.已知cos(x+$\frac{π}{4}$)=$\frac{3}{5}$且$\frac{17π}{12}$<x<$\frac{7π}{4}$,求$\frac{sin2x+2(sinx)^{2}}{1-tanx}$的值.

分析 根据题意,利用同角三角函数的基本关系求得sin(x+$\frac{π}{4}$)、tan(x+$\frac{π}{4}$)的值,再利用两角和与差的三角公式、诱导公式,即可求出结果.

解答 解:∵$\frac{17π}{12}$<x<$\frac{7π}{4}$,∴x+$\frac{π}{4}$∈($\frac{5π}{3}$,2π),
又cos(x+$\frac{π}{4}$)=$\frac{3}{5}$,
∴sin(x+$\frac{π}{4}$)=-$\sqrt{1{-cos}^{2}(x+\frac{π}{4})}$=-$\frac{4}{5}$,
∴tan(x+$\frac{π}{4}$)=-$\frac{4}{3}$;
∴$\frac{sin2x+{2sin}^{2}x}{1-tanx}$=$\frac{sin2x(1+\frac{{2sin}^{2}x}{2sinxcosx})}{1-tanx}$
=sin2x•$\frac{1+tanx}{1-tanx}$
=-cos(2x+$\frac{π}{2}$)•$\frac{tan\frac{π}{4}+tanx}{1-tan\frac{π}{4}tanx}$
=-[2${cos}^{2}(x+\frac{π}{4})$-1]•tan(x+$\frac{π}{4}$)
=-[2×${(\frac{3}{5})}^{2}$-1]×(-$\frac{4}{3}$)
=-$\frac{28}{75}$.

点评 本题主要考查了同角三角函数的基本关系、两角和与差的三角公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.用分析法证明:当x≥0,y≥0时,$\sqrt{x}$≥$\sqrt{x+y}$-$\sqrt{y}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点A(-8,-6),B(-3,-1),C(5,a)三点共线,则a=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.公差不为0的等差数列{an}的部分项an1,a${\;}_{{n}_{2}}$,a${\;}_{{n}_{3}}$,…构成等比数列{a${\;}_{{n}_{k}}$},且n2=2,n3=6,n4=22,则下列项中是数列{a${\;}_{{n}_{k}}$}中的项是(  )
A.a46B.a89C.a342D.a387

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z=1+cosα+isinα(π<α<2π),则|$\overline{z}$|=(  )
A.2cos$\frac{α}{2}$B.-2cos$\frac{α}{2}$C.2sin$\frac{α}{2}$D.-2sin$\frac{α}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|y=lnx},B={(x,y)|y=$\frac{1}{x}$},则A∩B中的元素个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知底面为正三角形的直三棱柱内接于半径为1的球,当三棱柱的体积最大时,三棱柱的高为$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{a{x}^{2}}{{e}^{x}}$,直线y=$\frac{1}{e}$x为曲线y=f(x)的切线(e为自然对数的底数).
(1)求实数a的值;
(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x-$\frac{1}{x}$}(x>0),若函数h(x)=g(x)-cx2为增函数,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.现需设计2016年春季湖北省重点高中联考协作体期中考试数学试卷,该试卷含有大小相等的左右相等两个矩形栏目(即图中阴影部分),这两栏的面积之和为720cm2,四周空白的宽度为4cm,两栏之间的中缝空白的宽度为2cm,设试卷的高和宽分别为xcm,ycm.
(Ⅰ)写出y关于x的函数表达式,并求该函数的定义域;
(Ⅱ)如何确定该试卷的高与宽的尺寸(单位:cm),能使试卷的面积最小?

查看答案和解析>>

同步练习册答案