精英家教网 > 高中数学 > 题目详情
(本小题满分13分)经市场调查,某商场的一种商品在过去的一个月内(以30天计)销售价格(元)与时间(天)的函数关系近似满足为正的常数),日销售量(件)与时间(天)的函数关系近似满足,且第25天的销售金额为13000元.
(1)求的值;
(2)试写出该商品的日销售金额关于时间的函数关系式,并求前半个月销售金额的最小值。
(1);(2= ,有最小值12100 元。

试题分析:(1)由题意,得,即,
解得……4分
(2) 
= ……9分
时,上单调减,在上单调增
所以当时,有最小值12100 元……………13分
点评:研究数学模型,建立数学模型,进而借鉴数学模型,对提高解决实际问题的能力,以及提高数学素养都是十分重要的.建立模型的步骤可分为: (1) 分析问题中哪些是变量,哪些是常量,分别用字母表示; (2) 根据所给条件,运用数学知识,确定等量关系; (3) 写出的解析式并指明定义域。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
若函数对任意的实数,均有,则称函数是区间上的“平缓函数”.  
(1) 判断是不是实数集R上的“平缓函数”,并说明理由;
(2) 若数列对所有的正整数都有 ,设,
求证: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)如果函数的单调减区间为,求函数的解析式;
(2)在(1)的条件下,求函数的图像过点的切线方程;
(3)证明:对任意的,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数在区间的导函数为在区间的导函数为若在区间恒成立,则称函数在区间上为“凸函数”,已知,若对任意的实数m满足时,函数在区间上为“凸函数”,则的最大值为(   )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于函数,给出下列四个命题:①该函数是以为最小正周期的周期函数;②当且仅当 (k∈Z)时,该函数取得最小值-1;
③该函数的图象关于 (k∈Z)对称;
④当且仅当 (k∈Z)时,0<.
其中正确命题的序号是_______   (请将所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列四组函数中,表示相同函数的一组是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)函数为奇函数,且在上为增函数,  , 若对所有都成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义新运算“&”与“”:,则函数 
是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既是奇函数又是偶函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义:若函数对于其定义域内的某一数,有,则称的一个不动点. 已知函数.
(1)当时,求函数的不动点;
(2)若对任意的实数b,函数恒有两个不动点,求实数的取值范围;
(3)在(2)的条件下,若图象上两个点A、B的横坐标是函数的不动点,且线段AB的中点C在函数的图象上,求实数b的最小值.
(参考公式:若,则线段AB的中点坐标为)

查看答案和解析>>

同步练习册答案