精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,AB=10,BC=14,AC=16,
(1)求三角形的外接圆的半径R,
(2)若AD为∠BAC的内角平分线,求AD的长.

【答案】分析:(1)利用余弦定理表示出cos∠BAC,将三边长代入求出cos∠BAC的值,利用特殊角的三角函数值求出∠BAC的度数,再利用正弦定理即可求出外接圆半径R;
(2)根据S△ABD+S△ADC=S△ABC,利用三角形面积公式列出关系式,即可求出AD的长.
解答:解:(1)在△ABC中,AB=c=10,BC=a=14,AC=b=16,
∴由余弦定理得:cos∠BAC==
∴∠BAC=60°,
设△ABC的外接圆半径为R,由正弦定理得:2R===
∴R=
(2)由S△ABD+S△ADC=S△ABC,得×10×AD×sin30°+×16×AD×sin30°=×10×16×sin60°,
解得:AD=
点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案