【题目】如图,平面分别是上的动点,且.
(1)若平面与平面的交线为,求证:;
(2)当平面平面时,求平面与平面所成的二面角的余弦值.
【答案】(1)见解析;(2)
【解析】
(1)首先由线面平行的判定定理可得平面,再由线面平行的性质定理即可得证;
(2)以点为坐标原点,,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,利用空间向量法求出二面角的余弦值;
解:(1)由,
又平面,平面,所以平面.
又平面,且平面平面,
故.
(2)因为平面,所以,又,所以平面,
所以,又,所以.
若平面平面,则平面,所以,
由且,
又,所以.
以点为坐标原点,,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,
则 ,,设
则
由,可得,,即,所以可得,所以,
设平面的一个法向量为,则
,,,取,得
所以
易知平面的法向量为,
设平面与平面所成的二面角为,
则,
结合图形可知平面与平面所成的二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )
A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著
B.从2014年到2018年这5年,高铁运营里程与年价正相关
C.2018年高铁运营里程比2014年高铁运营里程增长80%以上
D.从2014年到2018年这5年,高铁运营里程数依次成等差数列
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设X~N(1,σ2),其正态分布密度曲线如图所示,且P(X≥3)=0.0228,那么向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为( )
(附:随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)
A. 6038 B. 6587 C. 7028 D. 7539
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,点,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线.
(1)求曲线的标准方程;
(2)已知过坐标原点的直线交曲线于、两点,若在曲线上存在点,使得,求的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若曲线在处的切线与轴平行,求;
(2)已知在上的最大值不小于,求的取值范围;
(3)写出所有可能的零点个数及相应的的取值范围.(请直接写出结论)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com