精英家教网 > 高中数学 > 题目详情

【题目】如图,平面分别是上的动点,且.

1)若平面与平面的交线为,求证:

2)当平面平面时,求平面平面所成的二面角的余弦值.

【答案】1)见解析;(2

【解析】

1)首先由线面平行的判定定理可得平面,再由线面平行的性质定理即可得证;

2)以点为坐标原点,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,利用空间向量法求出二面角的余弦值;

解:(1)由

平面平面,所以平面.

平面,且平面平面

.

2)因为平面,所以,又,所以平面

所以,又,所以.

若平面平面,则平面,所以

,所以.

以点为坐标原点,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,

,设

,可得,即,所以可得,所以

设平面的一个法向量为,则

,取,得

所以

易知平面的法向量为

设平面与平面所成的二面角为

结合图形可知平面与平面所成的二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数)的图象在处的切线为为自然对数的底数)

(1)求的值;

(2)若,且对任意恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若,试判断的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )

A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著

B.从2014年到2018年这5年,高铁运营里程与年价正相关

C.2018年高铁运营里程比2014年高铁运营里程增长80%以上

D.从2014年到2018年这5年,高铁运营里程数依次成等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求曲线的直角坐标方程;

(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】XN(12),其正态分布密度曲线如图所示,P(X≥3)=0.0228,那么向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为(  )

(附:随机变量ξ服从正态分布N(μσ2),则P(μσξμσ)=68.26%,P(μ-2σξμ+2σ)=95.44%)

A. 6038 B. 6587 C. 7028 D. 7539

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线.

1)求曲线的标准方程;

2)已知过坐标原点的直线交曲线两点,若在曲线上存在点,使得,求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线处的切线与轴平行,求

2)已知上的最大值不小于,求的取值范围;

3)写出所有可能的零点个数及相应的的取值范围.(请直接写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数处取得极值,求实数的值.

(Ⅱ)若函数不存在零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案