精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若曲线处的切线与轴平行,求

2)已知上的最大值不小于,求的取值范围;

3)写出所有可能的零点个数及相应的的取值范围.(请直接写出结论)

【答案】1;(2;(3)见解析

【解析】

1)由题意结合导数的几何意义可得,即可得解;

2)原命题等价于上有解,设,通过求导可得,由有解问题的解决方法即可得解;

3)令,显然不成立,若,则,令,求导后画出函数的草图数形结合即可得解.

1)因为,故.

依题意,即.

时,,此时切线不与轴重合,符合题意,

因此.

2)当时,最大值不小于2

上有解,

显然不是解,即上有解,

.

.

所以单调递减,

所以,所以单调递增,

所以.

依题意需

所以的取值范围为.

3)当时,0个零点;当时,1个零点

时,2个零点;当时,3个零点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从广安市某中学校的名男生中随机抽取名测量身高,被测学生身高全部介于cmcm之间,将测量结果按如下方式分成八组:第一组,第二组,...,第八组,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为人.

1)求第七组的频率;

2)估计该校名男生的身高的中位数。

3)若从样本中身高属于第六组和第八组的所有男生中随机抽取两名男生,求抽出的两名男生是同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ax2ex1a≠0.

1)求函数fx)的单调区间;

2)已知a0x[1+∞),若函数fx)没有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间[0,1]上的函数yf(x)的图象如图所示.对满足0<x1<x2<1的任意x1x2,给出下列结论:

f(x1)-f(x2)>x1x2

f(x1)-f(x2)<x1x2

x2f(x1)>x1f(x2);

其中正确结论的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程与曲线的直角坐标方程;

2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于,求面积的最小值,并求此时四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于两点,且.

1)求抛物线的方程;

2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线,交抛物线于另两点,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:互补.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若无穷数列满足:,且对任意(skl)都有,则称数列为“T”数列.

1)证明:正项无穷等差数列是“T”数列;

2)记正项等比数列的前n项之和为,若数列是“T”数列,求数列公比的取值范围;

3)若数列是“T”数列,且数列的前n项之和满足,求证:数列是等差数列.

查看答案和解析>>

同步练习册答案