精英家教网 > 高中数学 > 题目详情

【题目】XN(12),其正态分布密度曲线如图所示,P(X≥3)=0.0228,那么向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为(  )

(附:随机变量ξ服从正态分布N(μσ2),则P(μσξμσ)=68.26%,P(μ-2σξμ+2σ)=95.44%)

A. 6038 B. 6587 C. 7028 D. 7539

【答案】B

【解析】分析:求出,即可得出结论.

详解:由题意得,P(X≤-1)=P(X≥3)=0.0228,

P(-1<X<3)=1-0.022 8×2=0.954 4,∴1-2σ=-1,σ=1,

P(0≤X≤1)=P(0≤X≤2)=0.341 3,

故估计的个数为10000×(1-0.3413)=6587,

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2015年推出一种新型家用轿车,购买时费用为16.9万元,每年应交付保险费、养路费及汽油费共1.2万元,汽车的维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费均比上一年增加0.2万元.

(I)设该辆轿车使用n年的总费用(包括购买费用、保险费、养路费、汽油费及维修费)为f(n),求f(n)的表达式;

(II)这种汽车使用多少报废最合算(即该车使用多少年,年平均费用最少)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sinx的图象向右平移 个单位后得到函数y=g(x)的图象,则函数y=f(x)+g(x)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生参加社会实践活动,对某公司1月份至6月份销售某种配件的销售量及销售单价进行了调查,销售单价x和销售量y之间的一组数据如下表所示:

月份

1

2

3

4

5

6

销售单价(元)

9

9.5

10

10.5

11

8

销售量(件)

11

10

8

6

5

14.2

(1)根据1至5月份的数据,求出y关于x的回归直线方程;

(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?

(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).

参考公式:回归直线方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.
(1)当a=90时,求纸盒侧面积的最大值;
(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,若存在实数,使得对于任意的,都有,则称数列为“数列”( )

A. 是等差数列,且首项,则数列是“数列”

B. 是等差数列,且公差,则数列是“数列”

C. 是等比数列,也是“数列”,则数列的公比满足

D. 是等比数列,且公比满足,则数列是“数列”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l: (t为参数),与曲线C: (k为参数)交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,摩天轮的半径为点距地面的高度为,摩天轮按逆时针方向作匀速运动,且每转一圈,摩天轮上点的起始位置在最高点.

(1)试确定点距离地面的高度(单位:)关于旋转时间(单位:)的函数关系式;

(2)在摩天轮转动一圈内,有多长时间点距离地面超过

查看答案和解析>>

同步练习册答案