| A. | (-∞,-1)∪(1,+∞) | B. | (-∞,-1)∪(0,1) | C. | (-1,0)∪(0,1) | D. | (-1,0)∪(1,+∞) |
分析 由题意构造函数g(x)=xf (x),再由导函数的符号判断出函数g(x)的单调性,由函数f(x)的奇偶性得到函数g(x)的奇偶性,由f(1)=0得g(1)=0、还有g(-1)=0,再通过奇偶性进行转化,利用单调性求出不等式得解集.
解答 解:设g(x)=xf(x),
则g'(x)=[xf(x)]'=x'f(x)+xf'(x)=f(x)+xf′(x)>0恒成立,
∴函数g(x)在区间(0,+∞)上是增函数,
∵f(x)是定义在R上的偶函数,∴g(x)=xf(x)是R上的奇函数,
∴函数g(x)在区间(-∞,0)上是增函数,
∵f(1)=0,∴f(-1)=0; 即g(-1)=0,g(1)=0
∴xf(x)>0化为g(x)>0,
当x>0时,不等式f(x)>0等价于g(x)>0,即g(x)>g(1),即x>1;
当x<0时,不等式f(x)>0等价于g(x)<0,即g(x)<g(-1),即x<-1.
故所求的解集为(-∞,-1)∪(1,+∞);
故选:A.
点评 本题考查了由条件构造函数和用导函数的符号判断函数的单调性,利用函数的单调性和奇偶性的关系对不等式进行转化,注意函数值为零的自变量的取值.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (1,+∞) | C. | (0,1) | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | 2$\sqrt{10}$ | C. | 2$\sqrt{5}$ | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com