精英家教网 > 高中数学 > 题目详情
7.设命题p:实数x满足x2-4ax+3a2<0,其中a≠0,命题q:实数x满足$\left\{\begin{array}{l}{{x}^{2}-x-6≤0}\\{{x}^{2}+2x-8>0}\end{array}\right.$.
(1)若a=1,且p且q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

分析 (1)当a=1,p且q为真时,则p,q同时为真,建立条件即可求实数x的取值范围;
(2)利用p是q的必要不充分条件,建立条件关系即可求实数a的取值范围.

解答 解:(1)当a=1时,由x2-4x+3<0得1<x<3,即p:1<x<3,
由$\left\{\begin{array}{l}{{x}^{2}-x-6≤0}\\{{x}^{2}+2x-8>0}\end{array}\right.$得$\left\{\begin{array}{l}{-2<x<3}\\{x>2或x<-4}\end{array}\right.$,得2<x<3
q:2<x<3,
∵p且q为真,
∴p,q同时为真,即x满足$\left\{\begin{array}{l}{2<x<3}\\{1<x<3}\end{array}\right.$,
即2<x<3.
由$\left\{\begin{array}{l}{x≤0}\\{{x}^{2}+2x-8>0}\end{array}\right.$,得$\left\{\begin{array}{l}{x≤0}\\{x>2或x<-4}\end{array}\right.$,得x<-4
q:x<-4,
∵p且q为真,
∴p,q同时为真,即x满足$\left\{\begin{array}{l}{x<-4}\\{1<x<3}\end{array}\right.$,
即2<x<3.
(2)∵p是q的必要不充分条件,
∴q是p的充分不必要条件,
由p知,即A={x|a<x<3a,a>0},
由q知,B={x|2<x<3}
∴B?A,
∴$\left\{\begin{array}{l}{a≤2}\\{3a≥3}\end{array}\right.$,
即$\left\{\begin{array}{l}{a≥1}\\{a≤2}\end{array}\right.$,
1≤a≤2
即实数a的取值范围是[1,2].

点评 本题主要考查充分条件和必要条件的应用,利用复合命题之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.计算:${C}_{3}^{2}$+${C}_{4}^{2}$+${C}_{5}^{2}$+…+${C}_{100}^{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知0<x<π,且sin2x=-$\frac{7}{25}$,则sin(${\frac{π}{4}$-x)的值为-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=[x[x]],其中[x]表示不超过实数x的最大整数,如[-1.01]=-2,[1.99]=1,若$-\frac{3}{2}≤x<\frac{3}{2}$,则f(x)的值域为(  )
A.{0,1,2}B.{0,1,2,3}C.{-2,-1,0}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在空间几何体ABCDE中,平面ACD⊥平面ABC,△ABC和△ACD都是边长为2的等边三角形,BE=2,点E在平面ABC内的射影落在∠ABC的平分线上,DE∥平面ABC.
(Ⅰ)求直线BE与平面ABC所成的角;
(Ⅱ)求二面角E-BC-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设{an}是各项均为正数的等比数列,Sn为其前n项和,若S4=5S2,则此数列的公比q的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若向量$\overrightarrow{a}$=(2cosα,-1),$\overrightarrow{b}$=($\sqrt{3}$,tanα),且$\overrightarrow{a}$$∥\overrightarrow{b}$,则sinα=$-\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.式子 $\frac{{2cos{{10}°}-sin{{20}°}}}{{2sin{{70}°}}}$的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)的导函数为f′(x),且f(x)=f′($\frac{π}{6}$)sinx+f′($\frac{π}{3}$)cosx+x,则f′($\frac{π}{3}$)=(  )
A.3-$\sqrt{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.3+$\sqrt{3}$

查看答案和解析>>

同步练习册答案