精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,抛物线C的顶点在原点O,过点,其焦点Fx轴上.

求抛物线C的标准方程;

斜率为1且与点F的距离为的直线x轴交于点M,且点M的横坐标大于1,求点M的坐标;

是否存在过点M的直线l,使lC交于PQ两点,且若存在,求出直线l的方程;若不存在,说明理由.

【答案】(1);(2);(3)见解析.

【解析】

(1)的方程为,其过点,解得m值,从而得到结果;

(2)的方程为,利用点到直线距离得到,又点的横坐标大于,从而得到点的坐标;

(3)设的方程为,代入抛物线方程可得,结合韦达定理即可作出判断.

(1)设的方程为

的方程为

(2)点的坐标为

的方程为

轴的交点为

>

的坐标为

(3)设的方程为,Q

,则要,即不成立

不存在满足条件的直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xex﹣a(lnx+x).
(1)若函数f(x)恒有两个零点,求a的取值范围;
(2)若对任意x>0,恒有不等式f(x)≥1成立. ①求实数a的值;
②证明:x2ex>(x+2)lnx+2sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,曲线C的参数方程为 (θ为参数),直线l的参数方程为 (t为参数)以坐标原点O为极点,x轴的正半轴为极轴的极坐标系.
(1)写出直线l的普通方程以及曲线C的极坐标方程;
(2)若直线l与曲线C的两个交点分别为M,N,直线l与x轴的交点为P,求|PM||PN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥P﹣ABC中,AP=AB,平面PAB⊥平面ABC,ABC=90°,D,E分别为PB,BC的中点.

(1)求证:DE∥平面PAC;

(2)求证:DEAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某算法的程序框图,若程序运行后输出的结果是14,则判断框内填入的条件可以是(
A.S≥10?
B.S≥14?
C.n>4?
D.n>5?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在(单位:克)中,其频率分布直方图如图所示.

(1)求质量落在两组内的蜜柚的抽取个数,

(2)从质量落在内的蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年美国总统大选过后,有媒体从某公司的全体员工中随机抽取了200人,对他们的投票结果进行了统计(不考虑弃权等其他情况),发现支持希拉里的一共有95人,其中女员工55人,支持特朗普的男员工有60人.
(Ⅰ)根据已知条件完成下面的2×2列联表:据此材料,是否有95%的把握认为投票结果与性别有关?

支持希拉里

支持特朗普

合计

男员工

女员工

合计

(Ⅱ)若从该公司的所有男员工中随机抽取3人,记其中支持特朗普的人数为X,求随机变量X的分布列和数学期望.(用相应的频率估计概率)
附:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的奇函数f(x)满足f(x)=x2﹣2x﹣3(x>0).
(Ⅰ) 若函数g(x)=|f(x)|﹣a有4个零点,求实数a的取值范围;
(Ⅱ) 求|f(x+1)|≤4的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知四棱锥PABCD,底面ABCD为菱形,PA平面ABCDABC=60°,E,F分别是BC,PC的中点.

(1)证明:AEPD;

(2)HPD上的动点,EH与平面PAD所成最大角的正切值为,

求二面角EAFC的余弦值.

查看答案和解析>>

同步练习册答案