【题目】在平面直角坐标系中,抛物线C的顶点在原点O,过点,其焦点F在x轴上.
求抛物线C的标准方程;
斜率为1且与点F的距离为的直线与x轴交于点M,且点M的横坐标大于1,求点M的坐标;
是否存在过点M的直线l,使l与C交于P、Q两点,且若存在,求出直线l的方程;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xex﹣a(lnx+x).
(1)若函数f(x)恒有两个零点,求a的取值范围;
(2)若对任意x>0,恒有不等式f(x)≥1成立. ①求实数a的值;
②证明:x2ex>(x+2)lnx+2sinx.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,曲线C的参数方程为 (θ为参数),直线l的参数方程为 (t为参数)以坐标原点O为极点,x轴的正半轴为极轴的极坐标系.
(1)写出直线l的普通方程以及曲线C的极坐标方程;
(2)若直线l与曲线C的两个交点分别为M,N,直线l与x轴的交点为P,求|PM||PN|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥P﹣ABC中,AP=AB,平面PAB⊥平面ABC,∠ABC=90°,D,E分别为PB,BC的中点.
(1)求证:DE∥平面PAC;
(2)求证:DE⊥AD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某算法的程序框图,若程序运行后输出的结果是14,则判断框内填入的条件可以是( )
A.S≥10?
B.S≥14?
C.n>4?
D.n>5?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在, , , , , (单位:克)中,其频率分布直方图如图所示.
(1)求质量落在, 两组内的蜜柚的抽取个数,
(2)从质量落在, 内的蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年美国总统大选过后,有媒体从某公司的全体员工中随机抽取了200人,对他们的投票结果进行了统计(不考虑弃权等其他情况),发现支持希拉里的一共有95人,其中女员工55人,支持特朗普的男员工有60人.
(Ⅰ)根据已知条件完成下面的2×2列联表:据此材料,是否有95%的把握认为投票结果与性别有关?
支持希拉里 | 支持特朗普 | 合计 | |
男员工 | |||
女员工 | |||
合计 |
(Ⅱ)若从该公司的所有男员工中随机抽取3人,记其中支持特朗普的人数为X,求随机变量X的分布列和数学期望.(用相应的频率估计概率)
附:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的奇函数f(x)满足f(x)=x2﹣2x﹣3(x>0).
(Ⅰ) 若函数g(x)=|f(x)|﹣a有4个零点,求实数a的取值范围;
(Ⅱ) 求|f(x+1)|≤4的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知四棱锥P—ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(1)证明:AE⊥PD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,
求二面角E—AF—C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com