【题目】在三棱锥P﹣ABC中,AP=AB,平面PAB⊥平面ABC,∠ABC=90°,D,E分别为PB,BC的中点.
(1)求证:DE∥平面PAC;
(2)求证:DE⊥AD.
【答案】(1)见解析;(2)见解析.
【解析】
(1)利用中位线证得,根据线面平行的判定定理,可证得平面.(2)利用面面垂直的性质定理,证得平面,得到,根据等腰三角形的性质得到,由此证得平面,进而证得.
证明:(1)因为D,E分别为PB,BC的中点,
所以DE∥PC,
又DE平面PAC,PC平面PAC,
故DE∥平面PAC.
(2)因为AP=AB,PD=DB,所以AD⊥PB,
因为平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,
又BC⊥AB,BC平面ABC,所以BC⊥平面PAB,
因为AD平面PAB,所以AD⊥BC,
又PB∩BC=B,PB,BC平面ABC,故AD⊥平面PBC,
因为DE平面PBC,所以DE⊥AD.
科目:高中数学 来源: 题型:
【题目】如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆两焦点分别为是椭圆在第一象限弧上一点,并满足,过P作倾斜角互补的两条直线分别交椭圆于两点.
(1)求点坐标;
(2)求证:直线的斜率为定值;
(3)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,四边形ABCD中,AB∥CD,AD⊥AB,AB=2CD=4,AD=2,过点C作CO⊥AB,垂足为O,将△OBC沿CO折起,如图2使得平面CBO与平面AOCD所成的二面角的大小为θ(0<θ<π),E,F分别为BC,AO的中点
(1)求证:EF∥平面ABD
(2)若θ= ,求二面角F﹣BD﹣O的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={y|y= },B={x|y=lg(x﹣2x2)},则R(A∩B)=( )
A.[0, )
B.(﹣∞,0)∪[ ,+∞)
C.(0, )
D.(﹣∞,0]∪[ ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线C的顶点在原点O,过点,其焦点F在x轴上.
求抛物线C的标准方程;
斜率为1且与点F的距离为的直线与x轴交于点M,且点M的横坐标大于1,求点M的坐标;
是否存在过点M的直线l,使l与C交于P、Q两点,且若存在,求出直线l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx.
(Ⅰ)设函数g(x)= ,求g(x)的单调区间;
(Ⅱ)若方程f(x)=t有两个不相等的实数根x1 , x2 , 求证:x1+x2 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com