精英家教网 > 高中数学 > 题目详情
11.函数f(x)=lgcosx的单调递增区间为(2kπ-$\frac{π}{2}$,2kπ),k∈Z.

分析 令t=cosx,则f(x)=g(t)=lgt,故本题即求t>0时,函数t的增区间,再利用余弦函数的图象可得结论.

解答 解:令t=cosx,则f(x)=g(t)=lgt,故本题即求t>0时,函数t的增区间.
再利用余弦函数的图象可得t>0时,函数t的增区间为 $(-\frac{π}{2}+2kπ,2kπ](k∈Z)$,
故答案为:(2kπ-$\frac{π}{2}$,2kπ),k∈Z.

点评 本题主要考查复合函数的单调性,余弦函数、对数函数的图象性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知正数a,b满足a+b=2,则$\frac{1}{a+1}+\frac{4}{b+1}$的最小值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果二面角α-L-β的大小是60°,线段AB在α内,AB与L所成的角为60°,则AB与平面β所成角的正切值是$\frac{{3\sqrt{7}}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}为等差数列,其前n项和为Sn,若a3+a5+a7=$\frac{π}{4}$则sinS9的值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow m=({sin(\frac{π}{2}-x),-\sqrt{3}cosx})$,$\overrightarrow n=({sinx,cosx})$,f(x)=$\overrightarrow m•\overrightarrow n$.
(1)求f(x)的最大值和对称轴;
(2)讨论f(x)在$[{\frac{π}{6},\frac{2π}{3}}]$上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.集合{1,2,3}的子集个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.临近年终,郑州一蔬菜加工点分析市场发现:当月产量在10吨至25吨时,月生产总成本y(万元)可以看成月产量x(吨)的二次函数,当月产量为10吨时,月总成本为20万元,当月产量为15万吨时,月总成本最低且为17.5万元.
(1)写出月总成本y(万元)关于月产量x(吨)的函数关系;
(2)已知该产品销售价位每吨1.6万元,那么月产量为多少时,可获得最大利润,并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x.
(1)求f(x)的解析式,并画出的f(x)图象;
(2)设g(x)=f(x)-k,利用图象求:当实数k为何值时,函数g(x)有三个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知全集U={x∈N|1≤x≤10},A={1,2,3,5,8},B={1,3,5,7,9}.
(Ⅰ)求A∩B;               
(Ⅱ)求(∁UA)∩(∁UB).

查看答案和解析>>

同步练习册答案