精英家教网 > 高中数学 > 题目详情
18.若k∈R,则“k>1”是方程“$\frac{x^2}{k-1}+\frac{y^2}{k+1}=1$”表示椭圆的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.即不充分也不必要条件

分析 方程“$\frac{x^2}{k-1}+\frac{y^2}{k+1}=1$”表示椭圆?$\left\{\begin{array}{l}{k-1>0}\\{k+1>0}\\{k-1≠k+1}\end{array}\right.$,解得k,即可判断出结论.

解答 解:方程“$\frac{x^2}{k-1}+\frac{y^2}{k+1}=1$”表示椭圆?$\left\{\begin{array}{l}{k-1>0}\\{k+1>0}\\{k-1≠k+1}\end{array}\right.$,解得k>1.
∴“k>1”是方程“$\frac{x^2}{k-1}+\frac{y^2}{k+1}=1$”表示椭圆的充要条件.
故选:C.

点评 本题考查了椭圆的标准方程及其性质、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在二项式(ax2+$\frac{1}{\sqrt{x}}$)5的展开式中,若常数项为-10,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数x,y满足$\left\{\begin{array}{l}{y≥0}\\{x+y≤0}\\{2x+y+2≤0}\end{array}\right.$且ax-y+1-a=0,则实数a的取值范围是(  )
A.[-$\frac{1}{3}$,1)B.[-1,$\frac{1}{2}$]C.(-1,$\frac{1}{2}$]D.[-$\frac{1}{3}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若平面α,β,γ中,α⊥β,则“γ⊥β”是“α∥γ”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图:区域A是正方形OABC(含边界),区域B是三角形ABC(含边界).
(Ⅰ)向区域A随机抛掷一粒黄豆,求黄豆落在区域B的概率;
(Ⅱ)若x,y分别表示甲、乙两人各掷一次骰子所得的点数,求点(x,y)落在区域B的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线C:y2=8x,直线l:y=$\frac{{\sqrt{3}}}{3}$(x-2),直线l交C于A,B两点,则|AB|等于(  )
A.16B.$16\sqrt{3}$C.32D.$32\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)设AB=1,PD与平面ABCD所成的角为$\frac{π}{4}$,求二面角E-AF-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-$\frac{a(x-1)}{x+2}$.
(1)若a=4,求函数f(x)的单调区间;
(2)若函数f(x)在区间(0,1]内单调递增,求实数a的取值范围;
(3)若x1、x2∈R+,且x1≤x2,求证:(lnx1-lnx2)(x1+2x2)≤3(x1-x2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=1,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案