精英家教网 > 高中数学 > 题目详情
18.已知f(x)=$\frac{1}{2}{x^2}$-alnx(a>0),x∈[1,e].
(1)若f(x)的最小值为0,求实数a的值;
(2)若f(x)恰有两个零点,求实数a的取值范围.

分析 (1)求出函数的导数,通过当0<a≤1,当1<a<e2,求出函数的单调区间,与极值,然后求解a的值.
(2)由(1)知,当0<a≤1或a≥e2时,当1<a<e2时,要使f(x)在区间(1,e)上恰有两个零点,列出不等式求解a的范围.

解答 解:(1)$f'(x)=x-\frac{a}{x}=\frac{{{x^2}-a}}{x}=\frac{{(x+\sqrt{a})(x-\sqrt{a})}}{x}$,
当$\sqrt{a}≤1$时,即0<a≤1,f(x)在[1,e]单调递增∴$f{(x)_{min}}=f(1)=\frac{1}{2}≠0$,
当$1<\sqrt{a}<e$时,而1<a<e2,f(x)在$[1,\sqrt{a}]$单调递减,在$(\sqrt{a},e]$单调递增∴$f{(x)_{min}}=f(\sqrt{a})=\frac{1}{2}a-aln\sqrt{a}=\frac{1}{2}a-\frac{1}{2}alna=0$,∴a=e,
当$\sqrt{a}≥e$时,即a≥e2,f(x)在[1,e]单调递减,
∴$f{(x)_{min}}=f(e)=\frac{1}{2}{e^2}-a=0$∴$a=\frac{1}{2}{e^2}$(舍)
综上a=e
(2)由(1)知,当0<a≤1或a≥e2时,f(x)在[1,e]上单绸,不可能存在两个零点,
当1<a<e2时,要使f(x)在区间(1,e)上恰有两个零点,则有$\left\{\begin{array}{l}\frac{1}{2}a(1-lna)<0\\ f(1)=\frac{1}{2}>0\\ f(e)=\frac{1}{2}{e^2}-a>0\end{array}\right.$,
即$\left\{\begin{array}{l}a>e\\ a<\frac{1}{2}{e^2}\end{array}\right.⇒e<a<\frac{1}{2}{e^2}$,
所以a的取值范围为$(e,\frac{1}{2}{e^2})$.

点评 本题考查函数的导数判断函数的单调性以及函数的极值,考查函数的导数的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.不等式3x2-7x-10≥0的解集是{x|x≥$\frac{10}{3}$或x≤-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.△ABC的三边AB、BC、CA所在的直线方程分别是5x-y-12=0,x+3y+4=0,x-5y+12=0.求:
(1)经过点C且到原点的距离为7的直线方程;
(2)BC边上的高所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.对于函数f(x),定义f0(x)=f(x),f1(x)=f'0(x),…,fn(x)=f'n-1(x)(n∈N*),若f(x)=cosx,则f2014(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=xex,则函数f(x)的单调递增区间为(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式(x+1)(2-x)≤0的解集为(-∞,-1]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.点M到点F(2,0)的距离比它到直线x=-3的距离小1,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{\begin{array}{l}sin(πx)(x∈[{-2,0}])\\{3^{-x}}+1\;(x>0)\end{array}\right.$,则y=f[f(x)]-4的零点为(  )
A.$-\frac{π}{2}$B.$\frac{1}{2}$C.$-\frac{3}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(z)=$\overline{z}$,且z1=1+5i,z2=-3+3i,则$f(\overline{{z_1}-{z_2}})$=(  )
A.4+2iB.4+3iC.4-2iD.4-3i

查看答案和解析>>

同步练习册答案