精英家教网 > 高中数学 > 题目详情
6.对于函数f(x),定义f0(x)=f(x),f1(x)=f'0(x),…,fn(x)=f'n-1(x)(n∈N*),若f(x)=cosx,则f2014(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

分析 求函数的导数,根据条件判断导数的周期性进行求解即可.

解答 解:∵f0(x)=f(x)=cosx,
∴f1(x)=f'0(x)=-sinx,
f2(x)=f'1(x)=-cosx,
f3(x)=f'2(x)=sinx,
f4(x)=f'3(x)=cosx,
…,
∴fn(x)是周期为4的周期函数,
则f2014(x)=f503×4+2(x)=f2(x)=-cosx,
故选:D

点评 本题主要考查函数的导数的计算,根据条件求出函数的周期性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若cot(${\frac{3π}{2}$-θ)=$\frac{1}{2}$,则$\frac{{sin({3π-θ})+sin({\frac{3}{2}π+θ})}}{{cos({\frac{π}{2}+θ})+cos({π-θ})}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$f(x)=\left\{\begin{array}{l}{x^2}-3(x>0)\\ 1(x=0)\\ x+2(x<0)\end{array}\right.$,则f(f(f(-1)))=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=lnx+x2,则函数f(x)在[1,e]上的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在平面直角坐标系xoy中,直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t+4\sqrt{2}}\end{array}\right.$(t是参数),以原点O 为极点,O x为极轴建立极坐标系,圆C 的极坐标方程为$ρ=2cos(θ+\frac{π}{4})$.
(1)求直线l的普通方程和圆心C 的直角坐标;
(2)由直线l上的点向圆C引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若f(x)的定义域为R,f'(x)>1恒成立,f(-1)=1,则f(x)>x+2解集为(  )
A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=$\frac{1}{2}{x^2}$-alnx(a>0),x∈[1,e].
(1)若f(x)的最小值为0,求实数a的值;
(2)若f(x)恰有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,AB=3,BC=4,∠ABC=120°,若把△ABC绕直线AB旋转一周,则所形成的几何体的体积是12π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一个盒子中装有5个编号依次为1,2,3,4,5的球,这5个球除号码外完全相同,有放回地连续抽取两次,每次任意地取出一个球.
(1)用列举法列出所有可能的结果;
(2)求事件A=“取出球的号码之和不小于6的概率”.

查看答案和解析>>

同步练习册答案