分析 (1)根据向量垂直的性质得到坐标的关系等式,求出tanx;
(2)利用数量积公式得到x的三角函数等式,结合平方关系求出sinx+cosx.
解答 解:(1)因$\overrightarrow{m}$⊥$\overrightarrow{n}$,所以$\frac{{\sqrt{2}}}{2}$sinx-$\frac{{\sqrt{2}}}{2}$cosx=0 …(2分)
所以tanx=1 …(5分)
(2)因为$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{π}{3}$,$\overrightarrow m•\overrightarrow n=\frac{{\sqrt{2}}}{2}sinx-\frac{{\sqrt{2}}}{2}cosx=\frac{1}{2}$,所以$sinx-cosx=\frac{{\sqrt{2}}}{2}$①…(7分)
设sinx+cosx=a②
由①2+②2得a2=$\frac{3}{2}$ …(10分)
因x是锐角,所以a为正值,所以a=$\frac{{\sqrt{6}}}{2}$…(12分)
点评 本题考查了平面向量的坐标运算以及向量垂直的性质和三角函数的化简求值;属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 5 | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{5}{6}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β | |
| B. | 如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β | |
| C. | 如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ | |
| D. | 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com