| A. | (0,1) | B. | (-3,0) | C. | (-2,0) | D. | (-1,0) |
分析 为便于处理,不妨设t=($\frac{1}{2}$)x,于是可转化为求关于t的方程t2+2t+a=0的根的问题,明显地,原方程有正实数解,即可转化为关于t的方程在(0,1)上有解的问题.于是问题迎刃而解.
解答 解:设t=($\frac{1}{2}$)x,则有:a=-[($\frac{1}{2}$)2x+2($\frac{1}{2}$)x]=-t2-2t=-(t+1)2+1.
原方程有正数解x>0,则0<t=($\frac{1}{2}$)x<($\frac{1}{2}$)0=1,
即关于t的方程t2+2t+a=0在(0,1)上有实根.
又因为a=-(t+1)2+1.
所以当0<t<1时有1<t+1<2,
即1<(t+1)2<4,
即-4<-(t+1)2<-1,
即-3<-(t+1)2+1<0,
即得:-3<a<0,
故选:B.
点评 本题考查函数最值的求法,二次方程根的分布问题,以及对含参数的函数、方程的问题的考查,亦对转化思想,换元法在解题中的应用进行了考查.
科目:高中数学 来源: 题型:选择题
| A. | $f({{{log}_3}1.2})>f({-\frac{π}{6}})>f({-1})$ | B. | $f({-\frac{π}{6}})>f({{{log}_3}1.2})>f({-1})$ | ||
| C. | $f({-\frac{π}{6}})>f({-1})>f({{{log}_3}1.2})$ | D. | $f({-1})>f({-\frac{π}{6}})>f({{{log}_3}1.2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 减函数 | B. | 增函数 | C. | 先增后减 | D. | 先减后增 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{2}$ | C. | 3 | D. | $\sqrt{2}+1$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com