精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=x-2sinx,则$f({-\frac{π}{6}})、f({-1})、f({{{log}_3}1.2})$的大小关系为(  )
A.$f({{{log}_3}1.2})>f({-\frac{π}{6}})>f({-1})$B.$f({-\frac{π}{6}})>f({{{log}_3}1.2})>f({-1})$
C.$f({-\frac{π}{6}})>f({-1})>f({{{log}_3}1.2})$D.$f({-1})>f({-\frac{π}{6}})>f({{{log}_3}1.2})$

分析 求出函数f(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数值的大小即可.

解答 解:f(x)=x-2sinx,f′(x)=1-2cosx,
令f′(x)>0,解得:2kπ-$\frac{5π}{3}$<x<2kπ-$\frac{π}{3}$,
令f′(x)<0,解得:2kπ-$\frac{π}{3}$<x<2kπ+$\frac{π}{3}$,
故f(x)在(-$\frac{π}{3}$,$\frac{π}{3}$)递减,
而-$\frac{π}{3}$<-1<-$\frac{π}{6}$<3log1.2<$\frac{π}{3}$,
故f(-1)>f(-$\frac{π}{6}$)>f(log31.2),
故选:D.

点评 本题考查了函数的单调性问题,考查导数的应用以及三角函数问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知y=f(x)是定义在R上的增函数且为奇函数,若对任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,则当x>3时,x2+y2的取值范围是(  )
A.(3,7)B.(9,25)C.(13,49)D.(9,49)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合$A=\left\{{\left.x\right|\frac{x}{x-1}≥0,x∈R}\right\},B=\left\{{\left.y\right|y=3{x^2}+1,x∈R}\right\}$,则A∩B=(  )
A.(1,+∞)B.[1,+∞)C.(-∞,0]∪(1,+∞)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知空间四边形OABC,M,N分别是对边OA,BC的中点,点G在线段MN上,且,设$\overrightarrow{OG}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则x,y,z的值分别是(  )
A.x=$\frac{1}{3}$,y=$\frac{1}{3}$,z=$\frac{1}{3}$B.x=$\frac{1}{3}$,y=$\frac{1}{3}$,z=$\frac{1}{6}$C.x=$\frac{1}{3}$,y=$\frac{1}{6}$,z=$\frac{1}{3}$D.x=$\frac{1}{6}$,y=$\frac{1}{3}$,z=$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.为了估计某校的一次数学考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在[40,100)上,将这些成绩分成六段[40,50),[50,60)…[90,100),后得到如图所示部分频率分布直方图.
(1)求抽出的60名学生中分数在[70,80)内的人数;
(2)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校优秀人数.
(3)根据频率分布直方图算出样本数据的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\frac{ln(x+2)}{\sqrt{x-1}}$的定义域为(  )
A.(-2,+∞)B.(1,+∞)C.(-2,1)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+mx+n有两个零点-1与3.
(1)求出函数f(x)的解析式,并指出函数f(x)的单调递增区间;
(2)若g(x)=f(|x|)在x1,x2∈[t,t+1]是增函数,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a>0且a≠1,命题p:“函数y=logax在(0,+∞)内单调递减”命题q:“曲线y=x2+(2a-3)x+1与x轴有两个不同的交点若命题p且q是假命题,p或q为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若方程($\frac{1}{4}$)x+($\frac{1}{2}$)x-1+a=0有正数解,则实数a的取值范围是(  )
A.(0,1)B.(-3,0)C.(-2,0)D.(-1,0)

查看答案和解析>>

同步练习册答案