精英家教网 > 高中数学 > 题目详情
2.已知空间四边形OABC,M,N分别是对边OA,BC的中点,点G在线段MN上,且,设$\overrightarrow{OG}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则x,y,z的值分别是(  )
A.x=$\frac{1}{3}$,y=$\frac{1}{3}$,z=$\frac{1}{3}$B.x=$\frac{1}{3}$,y=$\frac{1}{3}$,z=$\frac{1}{6}$C.x=$\frac{1}{3}$,y=$\frac{1}{6}$,z=$\frac{1}{3}$D.x=$\frac{1}{6}$,y=$\frac{1}{3}$,z=$\frac{1}{3}$

分析 利用向量的三角形法则和共线定理、平行四边形法则即可得出.

解答 解:如图所示,
∵$\overrightarrow{OG}$=$\overrightarrow{OM}$+$\overrightarrow{MG}$=$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{MN}$=$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{ON}$-$\frac{2}{3}$$\overrightarrow{OM}$=$\frac{1}{6}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$,
又有$\overrightarrow{OG}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,
∴x=$\frac{1}{6}$,y=$\frac{1}{3}$,z=$\frac{1}{3}$,
故选:D.

点评 本题考查了向量的三角形法则和共线定理、平行四边形法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,PM,切点为Q,M,且满足|PQ|=|PA|.
(1)求实数a,b间满足的等量关系;
(2)若以P为圆心的圆P与圆O有公共点,试求圆P的半径最小时圆P的方程;
(3)当P点的位置发生变化时,直线QM是否过定点,如果是,求出定点坐标,如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在正三棱柱ABC-A1B1C1中,AA1=6,异面直线BC1与AA1所成角的大小为30°,求该三棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知各项为正数的数列{an}的前n项和为Sn,且满足$\sqrt{2{S_n}}=\frac{{{a_n}+2}}{2}$
(Ⅰ)求证:{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{1}{{{a_n}+{a_1}}}+\frac{1}{{{a_n}+{a_2}}}+…+\frac{1}{{{a_n}+{a_n}}}+\frac{1}{{{a_n}+{a_{n+1}}}}({n∈{N^*}})$,求证:${b_n}≤\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知各项为正数的数列{an}的前{Sn},满足$\sqrt{2{S_n}}=\frac{{{a_n}+2}}{2}$
(Ⅰ)求证:{an}为等差数列,并求an
(Ⅱ)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示,已知线段AB在平面α内,线段AC⊥α,线段BD⊥AB,线段DD′⊥α于D′,如果∠DBD=30°,AB=AC=BD=1,则CD的长为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=x-2sinx,则$f({-\frac{π}{6}})、f({-1})、f({{{log}_3}1.2})$的大小关系为(  )
A.$f({{{log}_3}1.2})>f({-\frac{π}{6}})>f({-1})$B.$f({-\frac{π}{6}})>f({{{log}_3}1.2})>f({-1})$
C.$f({-\frac{π}{6}})>f({-1})>f({{{log}_3}1.2})$D.$f({-1})>f({-\frac{π}{6}})>f({{{log}_3}1.2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)的对称轴x=-2,f(x)的图象被x轴截得的弦长为2$\sqrt{3}$,且满足f(0)=1.
(1)求f(x)的解析式;
(2)若f(($\frac{1}{2}$)x)>k,对x∈[-1,1]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若b<a<0,则下列结果①a+b<ab;②|a|>|b|;③$\frac{1}{b}>\frac{1}{a}$>0;④表达式$\frac{b}{a}+\frac{a}{b}$最小值为2中,正确的结果的序号有①.

查看答案和解析>>

同步练习册答案