精英家教网 > 高中数学 > 题目详情
12.已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,PM,切点为Q,M,且满足|PQ|=|PA|.
(1)求实数a,b间满足的等量关系;
(2)若以P为圆心的圆P与圆O有公共点,试求圆P的半径最小时圆P的方程;
(3)当P点的位置发生变化时,直线QM是否过定点,如果是,求出定点坐标,如果不是,说明理由.

分析 (1)由已知Q为切点,可知PQ⊥OQ,结合勾股定理有|PQ|2=|OP|2-|OQ|2及已知|PQ|=|PA|,利用两点间的距离公式可得a,b之间的关系
(2)设圆P的半径为R,由圆P与圆O有公共点,且半径最小,可知R=OP,利用两点间的距离,结合(1)中a,b的关系可转化为关于a的二次形式,结合二次函数的性质可求R的最小值,进而可求圆的方程;
(3)求出直线MQ的方程,结合b=3-2a,即可得出结论.

解答 解:(1)连OP,∵Q为切点,PQ⊥OQ,由勾股定理有|PQ|2=|OP|2-|OQ|2
∵|PQ|=|PA|故PA2=PO2-1
∴a2+b2-1=(a-2)2+(b-1)2
化简可得,2a+b-3=0
(2)设圆P的半径为R,
∵圆P与圆O有公共点,且半径最小,
∴R=|OP|=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{{a}^{2}+(-2a+3)^{3}}$=$\sqrt{5(a-\frac{6}{5})^{2}+\frac{9}{5}}$,
故当a=$\frac{6}{5}$时,|OP|min=$\frac{3\sqrt{5}}{5}$
此时,b=$\frac{3}{5}$,Rmin=$\frac{3\sqrt{5}}{5}$-1.
得半径取最小值时圆P的方程为$(x-\frac{6}{5})^{2}+(y-\frac{3}{5})^{2}=(\frac{3\sqrt{5}}{5}-1)^{2}$;
(3)设Q(x1,y1),M(x2,y2),则
$\left\{\begin{array}{l}{{{x}_{1}}^{2}+{{y}_{1}}^{2}=1}\\{\frac{b-{y}_{1}}{a-{x}_{1}}•\frac{{y}_{1}}{{x}_{1}}=-1}\end{array}\right.$化简得ax1+by1=1,
同理ax2+by2=1.
所以,直线MQ的方程为ax+by=1.
∵b=3-2a,代入上式得(x-2y)a+3y-1=0,
令x-2y=0,3y-1=0,得x=$\frac{2}{3}$,y=$\frac{1}{3}$,
∴直线MQ过定点($\frac{2}{3},\frac{1}{3}$).

点评 本题主要考查了圆的性质的简单应用,还考查了一定的逻辑推理与运算的能力,试题具有一定的综合性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图所示,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,Q是棱PA上的动点.

(1)若Q是PA的中点,求证:PC∥平面BDQ;
(2)若PB=PD,求证:BD⊥CQ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数g(x)=$\frac{{4}^{x}-a}{{2}^{x}}$是奇函数,f(x)=lg(10x+1)+bx是偶函数.
(1)求a+b的值.
(2)若对任意的t∈[0,+∞),不等式g(t2-2t)+g(2t2-k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=loga(2x+1)-3必过的定点是(  )
A.(1,0)B.(0,1)C.(0,-3)D.(1,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$=(1,2,3),$\overrightarrow{b}$=(-2,-4,-6),|$\overrightarrow{c}$|=$\sqrt{14}$,若($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=7,则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某农场预算用5600元购买单价为50元(每吨)的钾肥和20元(每吨)的氮肥,希望使两种肥料的总数量(吨)尽可能的多,但氮肥数不少于钾肥数,且不多于钾肥数的1.5倍.
(Ⅰ)设买钾肥x吨,买氮肥y吨,按题意列出约束条件、画出可行域,并求钾肥、氮肥各买多少才行?
(Ⅱ)已知A(10,0),O是坐标原点,P(x,y)在(Ⅰ)中的可行域内,求$s=\frac{{\overrightarrow{OA}•\overrightarrow{OP}}}{{|{\overrightarrow{OP}}|}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知y=f(x)是定义在R上的增函数且为奇函数,若对任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,则当x>3时,x2+y2的取值范围是(  )
A.(3,7)B.(9,25)C.(13,49)D.(9,49)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(2x-3)=x2+x+1,求f(x)=$\frac{1}{4}{x^2}+2x+\frac{19}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知空间四边形OABC,M,N分别是对边OA,BC的中点,点G在线段MN上,且,设$\overrightarrow{OG}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则x,y,z的值分别是(  )
A.x=$\frac{1}{3}$,y=$\frac{1}{3}$,z=$\frac{1}{3}$B.x=$\frac{1}{3}$,y=$\frac{1}{3}$,z=$\frac{1}{6}$C.x=$\frac{1}{3}$,y=$\frac{1}{6}$,z=$\frac{1}{3}$D.x=$\frac{1}{6}$,y=$\frac{1}{3}$,z=$\frac{1}{3}$

查看答案和解析>>

同步练习册答案