精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上.若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为
 
考点:直线与圆相交的性质
专题:直线与圆
分析:设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a的范围.
解答: 解:设点M(x,y),由MA=2MO,知:
x2+(y-3)2
=2
x2+y2

化简得:x2+(y+1)2=4,
∴点M的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D,
又∵点M在圆C上,∴圆C与圆D的关系为相交或相切,
∴1≤|CD|≤3,其中|CD|=
a2+(2a-3)2
,∴1≤
a2+(2a-3)2
≤3,
化简可得 0≤a≤
12
5

故答案为:[0,
12
5
].
点评:本题主要考查圆与圆的位置关系的判定,两点间的距离公式,圆和圆的位置关系的判定,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(mx2,-1),
b
=(
1
mx-1
,x)(m是常数),且f(x)=
1
a
b

(1)若f(x)是奇函数,求m的值;
(2)设函数g(x)=f(
x
2
)-
x
2
,讨论当实数m变化时,函数g(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项不相等的数列{an}中,an+2=
an+an+1
2
,求证:{an+1-an}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线的标准方程为
x2
25-k
+
y2
9-k
=1
(1)若曲线表示双曲线,试求k的取值范围;
(2)在(1)的条件下,求其焦点坐标;
(3)在(1)的条件下,若曲线经过点(
15
,-1)
,求曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x),当x>0时,f(x)的表达式是指数函数,且f(2)=
1
4

(1)当x>0时,求f(x)的表达式;
(2)当x≤0时,求f(x)的表达式;
(3)画y=f(x),x∈[-4,0]的图象,并指出函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知直线l:y=-1,定点F(0,1),过平面内动点P作PQ丄l于Q点,且
QP
QF
=
FP
FQ

(Ⅰ)求动点P的轨迹E的方程;
(Ⅱ)过点P作圆x2+(y-2)2=4的两条切线,分别交x轴于点B、C,当点P的纵坐标y0>4时,试用y0表示线段BC的长,并求△PBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(1,2),
b
=(-1,0),若(
a
+m
b
)⊥
a
,则实数m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F(-1,0),过点F的直线交椭圆于A,B两点.若AB的中点坐标为(-
4
7
3
7
)

(1)求椭圆E的方程;
(2)求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={1,2,x2},B={1,x},且A∩B=B,则x的值为
 

查看答案和解析>>

同步练习册答案