【题目】设函数
是定义在
上的偶函数,且
,当
时,
,则在区间
内关于
的方程
解得个数为( )
A.
B.
C.
D. ![]()
【答案】C
【解析】
由题意求得函数的周期,根据偶函数的性质,及当x∈[﹣2,0]时,函数解析式,画出函数f(x)的图象,根据图象可得y=f(x)与y=log 8(x+2)在区间(﹣2,6)上有3个不同的交点.
解:对于任意的x∈R,都有f(2+x)=f(2﹣x),
∴f(x+4)=f[2+(x+2)]=f[(x+2)﹣2]=f(x),
∴函数f(x)是一个周期函数,且T=4.
又∵当x∈[﹣2,0]时,f(x)=(
)x﹣1,且函数f(x)是定义在R上的偶函数,
且f(6)=1,则函数y=f(x)与y=log 8(x+2)在区间(﹣2,6)上的图象如下图所示:
根据图象可得y=f(x)与y=log 8(x+2)在区间(﹣2,6)上有3个不同的交点.
故选:C.
![]()
科目:高中数学 来源: 题型:
【题目】有一种大型商品,
、
两地都有出售,且价格相同,现
地的居民从
、
两地之一购得商品后回运的运费是:
地每公里的运费是
地运费的
倍,已知
、
两地相距
,居民选择
或
地购买这种商品的标准是:包括运费和价格的总费用较低.
(1)求
地的居民选择
地或
地购物总费用相等时,点
所在曲线的形状;
(2)指出上述曲线内、曲线外的居民应如何选择购货地点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若圆
经过坐标原点和点
,且与直线
相切, 从圆
外一点
向该圆引切线
,
为切点,
(Ⅰ)求圆
的方程;
(Ⅱ)已知点
,且
, 试判断点
是否总在某一定直线
上,若是,求出
的方程;若不是,请说明理由;
(Ⅲ)若(Ⅱ)中直线
与
轴的交点为
,点
是直线
上两动点,且以
为直径的圆
过点
,圆
是否过定点?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关平面向量分解定理的四个命题:
(1)一个平面内有且只有一对不平行的向量可作为表示该平面所有向量的基;
(2)一个平面内有无数多对不平行向量可作为表示该平面内所有向量的基;
(3)平面向量的基向量可能互相垂直;
(4)一个平面内任一非零向量都可唯一地表示成该平面内三个互不平行向量的线性组合.
其中正确命题的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园内有一块以
为圆心半径为
米的圆形区域.为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形
区域,其中两个端点
,
分别在圆周上;观众席为梯形
内切在圆
外的区域,其中
,
,且
,
在点
的同侧.为保证视听效果,要求观众席内每一个观众到舞台
处的距离都不超过
米.设
,
.问:对于任意
,上述设计方案是否均能符合要求?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有除颜色外形状大小完全相同的6个小球,其中有4个编号为1,2, 3, 4的红球,2个编号为A、B的黑球,现从中任取2个小球.;
(1)求所取2个小球都是红球的概率;
(2)求所取的2个小球颜色不相同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于曲线
的下列说法:(1)关于点
对称;(2)关于直线
轴对称;(3)关于直线
对称;(4)是封闭图形,面积小于
;(5)是封闭图形,面积大于
;(6)不是封闭图形,无面积可言.其中正确的序号是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com