分析 利用一元二次不等式的解法可化简集合A,利用绝对值不等式的解法可化简集合B,再利用集合的运算即可得出答案.
解答 解:对于集合A:由x2+2x-8>0,化为(x+4)(x-2)>0,
解得x>2或x<-4,
∴A=(-∞,-4)∪(2,+∞).
对于集合B:由|x-a|<5,化为a-5<x<a+5,
∴B=(a-5,a+5).
∵A∪B=R,
∴$\left\{\begin{array}{l}{a+5≥2}\\{a-5≤-4}\end{array}\right.$,
解得-3≤a≤1.
∴a的取值范围是[-3,1].
点评 本题考查了集合的包含关系判断及应用,考查了一元二次不等式和绝对值不等式的解法,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (¬p)∨(¬q) | B. | ¬((¬p)∧(¬q)) | C. | ¬(p∨q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | N∈M | B. | N⊆M | C. | M∩N={1,5} | D. | M∪N={-3,-1,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | b>c>a | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1(y≠-2) | B. | $\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1(x≠-2) | D. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com