精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知动点M到点A(2,0)的距离是它到点B(8,0)的距离的一半,求:
(1) 动点M的轨迹方程;
(2) 若N为线段AM的中点,试求点N的轨迹.

(1) x2+y2=16; (2) 以(1,0)为圆心,2为半径的圆.

解析试题分析:(1)设动点M(x,y)为轨迹上任意一点,则点M的轨迹就是集合P={M||MA|=|MB|}.
由两点间距离公式,点M适合的条件可表示为
.
平方后再整理,得x2+y2=16.   可以验证,这就是动点M的轨迹方程.
(2)设动点N的坐标为(x,y),M的坐标是(x1,y1).
由于A(2,0),且N为线段AM的中点,
所以x=,y=.
所以有x1=2x-2,y1=2y.①
由(1)知,M是圆x2+y2=16上的点,
所以M的坐标(x1,y1)满足=16.②
将①代入②整理,得(x-1)2+y2=4.     所以N的轨迹是以(1,0)为圆心,2为半径的圆.
考点:轨迹方程的求法。
点评:求曲线的轨迹方程常采用的方法有直接法、定义法、相关点代入法、参数法。本题主要是利用直接法和相关点代入法,直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程。相关点代入法 是根据相关点所满足的方程,通过转换而求动点的轨迹方程。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知直线.
(Ⅰ)若,求实数的值;(2)当时,求直线之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在平面直角坐标系xOy中,平行于x轴且过点A(3,2)的入射光线 l1
被直线l:y=x反射.反射光线l2y轴于B点,圆C过点A且与l1, l2都相切.

(1)求l2所在直线的方程和圆C的方程;
(2)设分别是直线l和圆C上的动点,求的最小值及此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两直线。求分别满足下列条件的的值.
(1)直线过点,并且直线垂直;
(2)直线与直线平行,并且直线轴上的截距为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
已知直线.求轴所围成的三角形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知直线被两平行直线所截得的线段长为9,且直线过点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分8分)已知直线经过点,且垂直于直线
(1)求直线的方程;(2)求直线与两坐标轴围成三角形的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.
(Ⅰ)求曲线C1的方程;
(1-4班做)(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.
(5-7班做)(Ⅱ)设P(-4,1)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:四点A,B,C,D的纵坐标之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.(本小题满分14分)
如图,在边长为10的正三角形纸片ABC的边AB,AC上分别取D,E两点,使沿线段DE折叠三角形纸片后,顶点A正好落在边BC上(设为P),在这种情况下,求AD的最小值.

查看答案和解析>>

同步练习册答案