精英家教网 > 高中数学 > 题目详情
8.求x取何值时,函数y=$\frac{1}{co{s}^{2}x}$-2tanx+2取到最小值时,并求出这个最小值.

分析 换元得出令t=tanx,t∈R,y=t2-2t+3=(t-1)2+2,运用二次函数求解即可.

解答 解:∵y=$\frac{1}{co{s}^{2}x}$-2tanx+2=$\frac{si{n}^{2}x+co{s}^{2}x}{co{s}^{2}x}$-2tanx+2,
y=tan2x-2tanx+3,
令t=tanx,t∈R,
∴y=t2-2t+3=(t-1)2+2,
当t=1时,y=(t-1)2+2,的最小值为2,
此时x=k$π+\frac{π}{4}$,k∈z.

点评 本题考查了三角函数,换元法求解转化为二次函数求解最小值,关键是看三角函数的范围,容易题出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=x3-mx2+mx+3m在(0,1)内有极大值,无极小值,则(  )
A.m<0B.m<3C.0<m<3D.m>3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某医务人员说:“包括我在内,我们社区诊所医生和护士共有16名.无论是否把我算在内,下面说法都是对的.在这些医务人员中:护士多于医生;女医生多于女护士;女护士多于男护士;至少有一名男医生.”请你推断说话的人的性别与职业是(  )
A.男医生B.男护士C.女医生D.女护士

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线l过抛物线C:y2=2px(p>0)的焦点F,且被C截得的弦AB的长为8,且分别以FA,FB为直径的圆的面积和为12π,则抛物线的方程为y2=4x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设等比数列{an}的前项n项和为Sn,若S3=7,S6=63,则a7+a8+a9=448.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对于函数f(x)定义域D内的值x0,若对于任意的x∈D,恒有f(x)≥f(x0)(或f(x)≤f(x0)成立,则称x0是函数f(x)的极值点.若函数f(x)=2sin$\frac{πx}{m}$(m>0)在区间($\frac{1}{2}$,1)内恰有一个极值点,则m的取值范围为[$\frac{2}{7}$,$\frac{1}{3}$]∪[$\frac{2}{5}$,$\frac{2}{3}$)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=a2-x(a>0且a≠1),当x>2时,f(x)>1,则f(x)在R上(  )
A.是增函数
B.是减函数
C.当x>2时是增函数,当x<2时是减函数
D.当x>2时是减函数,当x<2时是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求适合下列关系式的x的集合:
(1)1+$\sqrt{3}$tanx=0,x∈R;
(2)3tanx-1=0,x∈R(精确到0.01);
(3)cos(π-x)=-$\frac{\sqrt{3}}{2}$,x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow{a}$-2$\overrightarrow{b}$=(11,4),若向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角为θ,则cosθ=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

同步练习册答案