【题目】函数f(x)=Asin(ωx+)(A,ω,是常数,A>0,ω>0)的部分图象如图所示,下列结论: ①最小正周期为π;
②将f(x)的图象向左平移 个单位,所得到的函数是偶函数;
③f(0)=1;
④ ;
⑤ .
其中正确的是( )
A.①②③
B.②③④
C.①④⑤
D.②③⑤
【答案】C
【解析】解:由图可得:函数函数y=Asin(ωx+)的最小值﹣|A|=﹣2, 令A>0,则A=2,又∵ = ﹣ ,ω>0
∴T=π,ω=2,
∴y=2sin(2x+)
将( ,﹣2)代入y=2sin(2x+)得sin( +)=﹣1
即 += +2kπ,k∈Z
即= +2kπ,k∈Z
∴f(x)=2sin(2x+ ).
∴f(0)=2sin = ,f(x+ )=2sin[2(x+ )+ ]=2sin(2x+ ).
f( )=2sin( + )=1.对称轴为直线x= ,一个对称中心是( ,0),故②③不正确;
根据f(x)=2sin(2x+ )的图象可知,④ 正确;
由于f(x)=2sin(2x+ )的图象关于点( ,0)中心对称,故⑤ 正确.
综上所述,其中正确的是①④⑤.br />故选C.
【考点精析】根据题目的已知条件,利用命题的真假判断与应用的相关知识可以得到问题的答案,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
科目:高中数学 来源: 题型:
【题目】设直线l:y=k(x+1)(k≠0)与椭圆3x2+y2=a2(a>0)相交于A、B两个不同的点,与x轴相交于点C,记O为坐标原点. (Ⅰ)证明:a2> ;
(Ⅱ)若 ,求△OAB的面积取得最大值时的椭圆方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}中,a2=2,a5=128.
(1)求通项an;
(2)若bn=log2an , 数列{bn}的前n项和为Sn , 且Sn=360,求n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn}满足:bn=an+1-an(n∈N*).
(1)若a1=1,bn=n,求数列{an}的通项公式;
(2)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.
(ⅰ)记cn=a6n-1(n≥1),求证:数列{cn}为等差数列;
(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次,求首项a1应满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin( ﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知A、B、C是椭圆上不同的三点, ,C在第三象限,线段BC的中点在直线OA上。
(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点P在椭圆上(异于点A、B、C)且直线PB, PC分别交直线OA于M、N两点,证明为定值并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】支篮球队进行单循环比赛(任两支球队恰进行一场比赛),任两支球队之间胜率都是.单循环比赛结束,以获胜的场次数作为该队的成绩,成绩按从大到小排名次顺序,成绩相同则名次相同.有下列四个命题:
:恰有四支球队并列第一名为不可能事件; :有可能出现恰有两支球队并列第一名;
:每支球队都既有胜又有败的概率为; :五支球队成绩并列第一名的概率为.
其中真命题是
A. ,, B. ,, C. .. D. ..
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com