| A. | (-4,2) | B. | (-∞,-4)∪(2,+∞) | C. | (2,+∞) | D. | (-∞,-4) |
分析 根据已知中的函数解析式,先分析函数的单调性和奇偶性,进而根据函数的性质及定义域,可将不等式f(a2-8)+f(2a)<0化为a2-8>-2a,解不等式组可得答案.
解答 解:函数f(x)=sinx-2x的定义域为R.
且f(-x)=-sinx+2x=-f(x)
故函数f(x)为奇函数
又∵f′(x)=cosx-2<0,
∴函数f(x)=sinx-2x在区间R上为减函数,
则不等式f(a2-8)+f(2a)<0可化为:f(a2-8)<-f(2a),
即f(a2-8)<f(-2a),
即a2-8>-2a
解得a<-4或a>2
故不等式f(a2-8)+f(2a)<0的解集是(-∞,-4)∪(2,+∞).
故选:B.
点评 本题考查的知识点是函数的单调性和奇偶性的性质,解不等式,是函数图象和性质与不等式的综合应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 20 | C. | 26 | D. | 32 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | S≤$\frac{3}{4}$? | B. | S≤$\frac{11}{12}$? | C. | S≤$\frac{25}{24}$? | D. | S≤$\frac{137}{120}$? |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com