精英家教网 > 高中数学 > 题目详情
16.如图,从A村去B村有3条道路,从B村去C村有2条道路.
(1)从A村经B村到C村有多少种不同的行走路线?
(2)某人从中任选一条路线,选中“先经A-B中路,再经B-C南路”的概率是多少?

分析 (1)由乘法计算原理得到从A村经B村到C村有多少种不同的行走路线.
(2)利用等可能事件概率计算公式能求出“先经A-B中路,再经B-C南路”的概率.

解答 解:(1)从A村去B村有3条道路,从B村去C村有2条道路,
结合图形,由乘法计算原理得到从A村经B村到C村,
不同的行走路线有:3×2=6条.
(2)∵从A村经B村到C村,不同的行走路线有:3×2=6条,
∴“先经A-B中路,再经B-C南路”的概率p=$\frac{1}{6}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意乘法原理和等可能事件的概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设曲线方程为$\frac{{x}^{2}}{|m|-2}+\frac{{y}^{2}}{5-m}=1$,当曲线为椭圆时,m的取值范围是(2,$\frac{7}{2}$)∪($\frac{7}{2}$,5)∪(-∞,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)的图象是如图所示的折线段OAB,点A的坐标为(1,2),点B的坐标为(3,0),定义函数g(x)=f(x)(1-x).
(1)求函数f(x)的解析式.
(2)画出函数g(x)的图象.
(3)求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+ax+1,x∈[0,1],求f(x)的最小值g(a),并求g(a)=-1时a的值及g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线C的极坐标方程ρ=1,以点0为原点,极轴为x轴的正半轴建立平面直角坐标系,直线1的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=-2+\sqrt{3}t}\end{array}\right.$(t为参数),C′:$\frac{{ρ}^{2}co{s}^{2}θ}{3}$+ρ2sin2θ=1.
(1)设曲线C′上任意两两点A、B.且OA⊥OB,求证:$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$为定值;
(2)若直线l与曲线C′交于两个不同的点A、B,M的直角坐标为(0,-2),求$\frac{1}{|MA|}$+$\frac{1}{|MB|}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)是定义在R上的函数,且f(x)在区间(0,2)上为增函数,对于任意x∈R,都有f(x)=f(4-x),则(  )
A.f(1)<f($\frac{5}{2}$)<f($\frac{7}{2}$)B.f($\frac{5}{2}$)<f(1)<f($\frac{7}{2}$)C.f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$)D.f($\frac{7}{2}$)<f($\frac{5}{2}$)<f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解不等式:|x2-3|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在频率分布直方图中共有11个小矩形,其中中间小矩形的面积是其余小矩形面积之和的4倍,若样本容量为220,则该组的频数是176.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f($\sqrt{x}$+$\frac{1}{\sqrt{x}}$)=x+$\frac{1}{x}$-2,则f(x)=x2-4(x≥2).

查看答案和解析>>

同步练习册答案