精英家教网 > 高中数学 > 题目详情
8.解不等式:|x2-3|<2.

分析 根据绝对值不等式的解法进行求解即可.

解答 解:∵|x2-3|<2.
∴-2<x2-3<2.
即1<x2<5.
解得1<x<$\sqrt{5}$或-$\sqrt{5}$<x<-1,
即不等式的解集为(1,$\sqrt{5}$)∪(-$\sqrt{5}$,-1).

点评 本题主要考查不等式的求解,根据绝对值不等式的解法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.海面上有两座灯塔A,B,与观察站C的距离都是m km,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东20°,则灯塔A,B间的距离是(  )
A.m kmB.$\sqrt{2}m\\;km$ kmC.2m kmD.$\sqrt{3}m$ km

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=3x-1,若f[g(x)]=2x+3,则g(x)=$\frac{2}{3}x+\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,从A村去B村有3条道路,从B村去C村有2条道路.
(1)从A村经B村到C村有多少种不同的行走路线?
(2)某人从中任选一条路线,选中“先经A-B中路,再经B-C南路”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=ax3+bx2+cx+d图象如图所示,则(  )
A.b∈(-∞,0)B.b∈(0,1)C.b∈(1,2)D.b∈(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知函数f(x)=-x2+2x+3.若x∈[a,a+1](a∈R),请问函数f(x)是否存在最大(小)值?若存在,请求出相应的最值;若不存在,请说明理由.
(2)己知函数f(x)=-x2+ax+3.若x∈[2,4](a∈R),请问函数f(x)是否存在最大(小)值?若存在,请求出相应的最值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对于整数p1,p2,…,pn(n∈N*),我们称$\frac{n}{\frac{1}{{p}_{1}}+\frac{1}{{p}_{2}}+…+\frac{1}{{p}_{n}}}$为他们的调和平均数,已知数列{an}的通项公式为an=$\frac{n(n+1)}{2n+1}$,且数列的第n项an是数列{bn}中的前n项的调和平均数.
(1)试求数列{bn}的通项公式;
(2)计算$\underset{lim}{x-∞}\frac{{{a}_{n}}^{2}}{{b}_{n}}$;
(3)求出数列{$\frac{{{a}_{n}}^{2}}{{b}_{n}}$}中数值最大的项和数值最小的项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点A、B、C、D在同-个球面上,DA⊥平面ABC,DA=AB=AC=$\sqrt{3}$,∠BAC=60°,则球的半径是$\frac{\sqrt{7}}{2}$.若∠BAC=120°,结果又如何?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=f(x)的定义域为[-4,6],且在区间[-4,-2]上递减,在区间(-2,6]上递增,且f(-4)<f(6),则函数f(x)的最小值是f(-2),最大值是f(6).

查看答案和解析>>

同步练习册答案