精英家教网 > 高中数学 > 题目详情
16.设集合A={x|$\frac{x-2}{x+1}$≤0},B={x|-4≤x≤1},则A∩B=(  )
A.[-1,1]B.[-4,2]C.(-1,1]D.(-1,1)

分析 由分式不等式的解法,化简集合B,再由交集的定义,即可得到所求集合.

解答 解:集合A={x|$\frac{x-2}{x+1}$≤0}={x|(x+1)(x-2)≤0且x+1≠0}
={x|-1<x≤2},
B={x|-4≤x≤1},
则A∩B={x|-1<x≤1}=(-1,1].
故选:C.

点评 本题考查集合的交集的求法,同时考查分式不等式的解法,运用定义法解题是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.数学老师从6道习题中随机抽3道让同学检测,规定至少要解答正确2道题才能及格.某同学只能求解其中的4道题,则他能及格的概率是$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,最小正周期为π且为奇函数的是(  )
A.y=sin$\frac{x}{2}$B.y=cos$\frac{x}{2}$C.y=cos2xD.y=sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线y=x+1的倾斜角为(  )
A.1B.-1C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}满足a3=3,前6项和为21.
(1)求数列{an}的通项公式;
(2)若bn=3${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(1+$\sqrt{x}$)6(1$-\sqrt{x}$)6的展开式中x的系数为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.为了得到函数y=2sin($\frac{x}{3}$+$\frac{π}{6}$),x∈R的图象,只需要把函数y=2sinx,x∈R的图象上所有的点(  )
A.向左平移$\frac{π}{6}$个单位,再把所得各点的横坐标缩短为原来的$\frac{1}{3}$倍(纵坐标不变)
B.向右平移$\frac{π}{6}$个单位,再把所得各点的横坐标缩短为原来的$\frac{1}{3}$倍(纵坐标不变)
C.向左平移$\frac{π}{6}$个单位,再把所得各点的横坐标缩短为原来的3倍(纵坐标不变)
D.向右平移$\frac{π}{6}$个单位,再把所得各点的横坐标缩短为原来的3倍(纵坐标不变)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)设f(x)=$\left\{\begin{array}{l}{{x}^{2},x∈[0,1)}\\{2-x,x∈[1,2]}\end{array}\right.$,求${∫}_{0}^{2}$f(x)dx的值;
(2)若复数z1=a+2i(a∈R),z2=3-4i,且$\frac{{z}_{1}}{{z}_{2}}$为纯虚数,求|z1|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\frac{tanα}{tanα-1}$=-1,求$\frac{1}{si{n}^{2}α+sinαcosα}$的值.

查看答案和解析>>

同步练习册答案