分析 (1)取AP中点F,连EF,BF,从而可证四边形EFBC为平行四边形,从而得到CE∥BF,从而证明CE∥平面PAB;
(2)取AB的中点O,可证PO⊥底面ABCD,利用已知求得|PO|=$\sqrt{3}$,S梯形ABCD=6,利用四棱锥的体积公式即可求值.
解答
解:(1)证明:取AP中点F,连EF,BF,
∵E为PD中点,∴EF∥AD且EF=$\frac{1}{2}$AD,
又∵BC∥AD且BC=$\frac{1}{2}$AD,∴EF∥BC且EF=BC,
∴四边形EFBC为平行四边形,
∴CE∥BF,
∴CE∥平面PAB;…6分
(2)如图,取AB的中点O,在正三角形PAB中,PO⊥AB,![]()
∵侧面PAB⊥底面ABCD,侧面PAB∩底面ABCD=AB,PO?侧面PAB,
∴PO⊥底面ABCD,…8分
由AB⊥AD,BC∥AD,且AB=BC=$\frac{1}{2}$AD=2,
可得:|PO|=$\sqrt{3}$,S梯形ABCD=6…10分
∴VP-ABCD=$\frac{1}{3}$S梯形ABCD|PO|=$\frac{1}{3}×6×\sqrt{3}$=2$\sqrt{3}$…12分
点评 本题主要考查了直线与平面平行的判定,四棱锥体积的求法,考查了空间想象能力和推理论证能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}+1$ | D. | $\sqrt{5}-1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1条 | B. | 2条 | C. | 3条 | D. | 4条 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com