精英家教网 > 高中数学 > 题目详情
已知点M(-1,0),N(1,0),动点P(x,y)满足:|PM|•|PN|=
4
1+cos∠MPN

(1)求P的轨迹C的方程;
(2)是否存在过点N(1,0)的直线l与曲线C相 交于A、B两点,并且曲线C存在点Q,使四边形OAQB为平行四边形?若存在,求出平行四边形OAQB的面积;若不存在,说明理由.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)设P(x,y),由已条条件推导出
(x+1)2+y2
(x-1)2+y2
=
4
1+
(x+1)(x-1)+y2
(x-1)2+y2
(x+1)2+y2
,由此能求出P的轨迹C的方程.
(Ⅱ)设A(x1,y1)、B(x2,y2),设l:x=my+1,代入椭圆方程得(2m2+3)y2+4my-4=0,由此利用根的判别式和韦达定理结合已条件推导出存在满足条件的点P,使得四边形OAPB为平行四边形,且该平行四边形的面积为
3
2
2
解答: 解:(1)设动点P(x,y),
∵点M(-1,0),N(1,0),动点P(x,y)满足:|PM|•|PN|=
4
1+cos∠MPN

(x+1)2+y2
(x-1)2+y2
=
4
1+
(x+1)(x-1)+y2
(x-1)2+y2
(x+1)2+y2

整理,得
x2
3
+
y2
2
=1

∴P的轨迹C的方程为
x2
3
+
y2
2
=1

(Ⅱ)设A(x1,y1)、B(x2,y2),
由题意知l的斜率一定不为0,∴设l:x=my+1,
代入椭圆方程整理得(2m2+3)y2+4my-4=0,
△=16m2+16(2m2+3)>0.
y1+y2=-
4m
2m2+3
,  y1y2=-
4
2m2+3
①,
假设存在点Q,使得四边形OAQB为平行四边形,
其充要条件为
OQ
=
OA
+
OB

则点Q的坐标为(x1+x2,y1+y2).
由点Q在椭圆上,即
(x1+x2)2
3
+
(y1+y2)2
2
=1

整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6
又A、B在椭圆上,即2x12+3y12=6, 2x22+3y22=6
∴2x1x2+3y1y2=3…②
x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1代入,
由①②解得m=±
2
2

m=
2
2
时,解得y1=-
2
, y2=
2
2

从而x1=0,  x2=
3
2
    ∴A(0,-
2
),  B(
3
2
2
2
)

OA
=(0,-
2
),   
OB
=(
3
2
2
2
)

cos∠AOB=
OA
OB
|
OA
||
OB
|
=-
2
11
,    sin∠AOB=
3
11
S平行四边形OAQB=|
OA
||
OB
|sin∠AOB=
3
2
2

同理当m=-
2
2
时,S平行四边形OAQB=
3
2
2

综上,存在满足条件的点P,使得四边形OAPB为平行四边形,
且该平行四边形的面积为
3
2
2
点评:本题考查点的轨迹方程的求法,考查满足条件的点是否存在的判断,考查平行四边形面积的求法,综合性强,难度大,解题时要注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为y=
1
2
x,则双曲线的离心率为(  )
A、
5
2
B、
5
C、
5
4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B是椭圆
x2
4
+
y2
3
=1
的左、右顶点,椭圆上异于A、B的两点C、D和x轴上一点P,满足
AP
=
1
3
AD
+
2
3
AC

(1)设△ADP、△ACP、△BCP、△BDP的面积分别为S1、S2、S3、S4,求证:S1S3=S2S4
(2)设P点的横坐标为x0,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
25
+
y2
9
=1的左、右焦点分别为F1、F2,P是椭圆上动点.
(1)求|PF1|•|PF2|的最大值;
(2)∠F1PF2=60°时,求△F1PF2的面积S;
(3)已知点A(2,2),求|PA|+|PF2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
,(a>b>0)的左焦点和上顶点分别为F和A,且抛物线y2=-8x的焦点恰好为F,原点O到直线AF的距离为
2
5
5

(1)求椭圆C的方程;
(2)设直线l交椭圆C于M、N,且F为△AMN的垂心,试求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

一动圆过定点P(0,1),且与定直线l:y=-1相切.
(1)求动圆圆心C的轨迹方程;
(2)若(1)中的轨迹上两动点记为A(x1,y1),B(x2,y2),且x1x2=-16.
①求证:直线AB过一定点,并求该定点坐标;
②求|PA|+|PB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y=x2,直线l:x-2y-2=0,点P是直线l上任意一点,过点P作抛物线C的切线PM,PN,切点分别为M,N,直线PM,PN斜率分别为k1,k2,如图所示.
(1)若P(4,1),求证:k1+k2=16;
(2)当P在直线l上运动时,求证:直线MN过定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+1+
lnx
x
,其中a∈R.
(Ⅰ)若f(x)的定义域上单调递增,求实数a的取值范围;
(Ⅱ)若函数g(x)=xf(x)有唯一零点,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

有7个座位连成一排,4人就坐,要求恰有两个空位相邻且甲乙两人不坐在相邻座位,则不同的坐法有
 
种(用数字作答).

查看答案和解析>>

同步练习册答案