精英家教网 > 高中数学 > 题目详情
已知抛物线C:y=x2,直线l:x-2y-2=0,点P是直线l上任意一点,过点P作抛物线C的切线PM,PN,切点分别为M,N,直线PM,PN斜率分别为k1,k2,如图所示.
(1)若P(4,1),求证:k1+k2=16;
(2)当P在直线l上运动时,求证:直线MN过定点,并求出该定点坐标.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)设过P的切线方程为:y-1=k(x-4),代入抛物线C得:x2-kx+4k-1=0,由△=0,能证明k1+k2=16.
(2)设P(x0,y0),x0-2y0=2,切点M(x1,y1),N(x2,y2)对y=x2求导数,推导出直线PM:y-y1=2x1(x-x1),直线PN:y-y2=2x2(x-x2),由此能证明MN过定点(
1
4
, 1)
解答: (1)证明:设过P的切线方程为:y-1=k(x-4),
代入抛物线C,消去y得:x2-kx+4k-1=0,
由△=k2-4(4k-1)=0,
∴k2-16k+4=0,
∵该方程的两个根为直线PM,PN斜率k1,k2
∴k1+k2=16.(5分)
(2)证明:设P(x0,y0),x0-2y0=2,切点M(x1,y1),N(x2,y2
对y=x2求导数,y'=2x,
∴k1=2x1,k2=2x2
∴直线PM:y-y1=2x1(x-x1),直线PN:y-y2=2x2(x-x2),
y1=
x
2
1
y2=
x
2
2

∴直线PM:y=2x1x-y1,直线PN:y=2x2x-y2
∵直线PM,PN都过点P,∴2x0x1-y1=y0,2x0x2-y2=y0
这说明M(x1,y1),N(x2,y2)满足直线2x0x-y=y0的方程,
∴直线MN为:2x0x-y=y0,∵x0-2y0=2,
∴MN为:4x0(x-
1
4
)=2(y-1)
,x0∈R,即MN过定点(
1
4
, 1)
.(12分)
点评:本题考查两直线的斜率之和为16的证明,考查直线过定点的证明,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下四个命题中,正确的是(  )
A、△ABC为直角三角形的充要条件是
AB
AC
=0
B、若
OP
=
1
2
OA
+
1
3
OB
,则P、A、B三点共线
C、若{
a
b
c
}
为空间的一个基底,则{
a
+
b
b
+
c
c
+
a
}
也构成空间的一个基底
D、|(
a
b
)•
c
|=|
a
|•|
b
|•|
c
|

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,其左焦点到点P(2,1)的距离为
10

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(-1,0),N(1,0),动点P(x,y)满足:|PM|•|PN|=
4
1+cos∠MPN

(1)求P的轨迹C的方程;
(2)是否存在过点N(1,0)的直线l与曲线C相 交于A、B两点,并且曲线C存在点Q,使四边形OAQB为平行四边形?若存在,求出平行四边形OAQB的面积;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,且离心率e=
1
2
,若点P为椭圆C上的一个动点,且|PF1|•|PF2|的最大值为4.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0),使得以PM、PN为邻边的平行四边形是菱形?如果存在,求出m的取值范围;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,直线l:y=
3
(x-4)
关于直线l1:y=
b
a
x
对称的直线l′与x轴平行.
(1)求双曲线的离心率;
(2)若点M(4,0)到双曲线上的点P的最小距离等于1,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2ωx-sin2ωx+2
3
cosωxsinωx(ω>0),f(x)的两条相邻对称轴间的距离大于等于
π
2

(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,角A,B,C所对的边依次为a,b,c,a=
3
,b+c=3,f(A)=1,当ω=1时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b是区间[0,3]上的两个随机数,则直线ax+by+3=0与圆x2+y2=1没有公共点的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.己知铜钱是直径为4cm的圆面,中间有边长为1cm的正方形孔,若随机向铜钱上滴一滴油(油滴整体落在铜钱内),则油滴整体(油滴是直径为0.2cm的球)正好落入孔中的概率是
 
(不作近似计算).

查看答案和解析>>

同步练习册答案