精英家教网 > 高中数学 > 题目详情
6.过曲线y=x3上一点P(1,1)作该曲线的切线,求该切线的方程.

分析 ①若(1,1)为切点,根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,再用点斜式写出切线方程;
②若不是切点,设出切点坐标,求出切线的斜率,由点斜式写出切线方程,把原点代入切线方程中化简可求出切点的横坐标,把横坐标代入即可求出切点的纵坐标,且得到切线的斜率,即可求出切线方程.

解答 解:y=x3的导数y′=3x2
①若(1,1)为切点,k=3•12=3,
∴切线l:y-1=3(x-1)即3x-y-2=0;
②若(1,1)不是切点,
设切点P(m,m3),k=3m2=$\frac{{m}^{3}-1}{m-1}$,
即2m2-m-1=0,则m=1(舍)或-$\frac{1}{2}$
∴切线l:y-1=$\frac{3}{4}$(x-1)即3x-4y+1=0.
故切线方程为:3x-y-2=0或3x-4y+1=0.

点评 本题主要考查导数的几何意义、利用导数研究曲线上某点处的切线方程等基础知识,注意在某点处和过某点的切线,考查运算求解能力.属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设△ABC的两顶点分别是B(1,1)和C(3,6),求第三个顶点A的轨迹方程,使|AB|=|BC|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲设计了一个摸奖游戏,在一个口袋中装有同样大小的10个球,分别标有数字0,1,2,…9这十个数字,摸奖者交5元钱可参加一回摸球活动,一回摸球活动的规则是:摸奖者在摸球前先随机确定(预报)3个数字,然后开始在袋中不放回地摸3次球,每次摸一个,摸得3个球的数字与预先所报数字均不相同的奖1元,有1个数字相同的奖2元,2个数字相同的奖10元,3个数字相同的奖50元,设ξ为摸奖者一回所得奖金数,求ξ的分布列和摸奖人获利的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知x≥1,求函数y=2x2+$\frac{a}{{x}^{2}}$-2(a>0)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列各式中的x值:
(1)${log}_{\sqrt{2}}$x=1-${log}_{\sqrt{3}}$$\sqrt{3}$;
(2)lgx=1-1g5;
(3)log3(x+1)=2;
(4)1nx=2lna-3lnb.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若存在非零实数x,y,使不等式(6a-1)x2-2xy+ay2≥0成立,则实数a的取值范围是(  )
A.[0,+∞)B.(-∞-$\frac{1}{3}$)∪($\frac{1}{2}$,+∞)C.[-$\frac{1}{3}$,+∞)D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过双曲线的焦点F1的直线与该双曲线的同一支相交于A,B两点,|AB|=m,另一个焦点为F2,则△ABF2的周长为(  )
A.4aB.4a-mC.4a+2mD.4a-2m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知两定点F1(-4,0),F2(4,0),动点P满足|PF1|一|PF2|=2a,则当a=2和4时,P点的轨迹是(  )
A.双曲线和一条直线B.双曲线和一条射线
C.双曲线的一支和一条射线D.双曲线的一支和一条直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}中,a1=2,an>0,$\frac{{a}_{n+1}}{4}$-$\frac{{a}_{n}}{4}$=1,求其通项公式.

查看答案和解析>>

同步练习册答案