精英家教网 > 高中数学 > 题目详情
求函数的导数
时,
时,
时因为存在,所以应当用导数定义求,当时,的关系式是初等函数,可以按各种求导法同求它的导数.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知 函数f(x)=的图像关于原点对称,其中m,n为实常数。
(1)求m , n的值;
(2)试用单调性的定义证明:f (x) 在区间[-2, 2] 上是单调函数;
(3)[理科做] 当-2≤x≤2 时,不等式恒成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象过原点,,函数y=f(x)与y=g(x)的图象交于不同两点A、B。
(1)若y=F(x)在x=-1处取得极大值2,求函数y=F(x)的单调区间;
(2)若使g(x)=0的x值满足,求线段AB在x轴上的射影长的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三次函数在y轴上的截距是2,且在上单调递增,在(-1,2)上单调递减.

20070328

 
   (Ⅰ)求函数f (x)的解析式;

   (Ⅱ)若函数,求的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

M是由满足下列两个条件的函数构成的集合:
①议程有实根;②函数的导数满足0<<1.
(I)若,判断方程的根的个数;
(II)判断(I)中的函数是否为集合M的元素;
(III)对于M中的任意函数,设x1是方程的实根,求证:对于定义域中任意的x2x3,当| x2x1|<1,且| x3x1|<1时,有

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于函数f(x)=bx3+ax2-3x.
(1)若f(x)在x=1和x=3处取得极值,且f(x)的图象上每一点的切线的斜率均不超过2sintcost-2cos2t+,试求实数t的取值范围;
(2)若f(x)为实数集R上的单调函数,且b≥-1,设点P的坐标为(a,b),试求出点P的轨迹所围成的图形的面积S.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=(x-1)(x-2),则f′(1)=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求下列函数的导数:
(1);(2);(3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题




(1)求的解析式
(2)满足什么条件时,函数在区间上单调递增?

查看答案和解析>>

同步练习册答案